論文の概要: Embedding Graphs on Grassmann Manifold
- arxiv url: http://arxiv.org/abs/2205.15068v1
- Date: Mon, 30 May 2022 12:56:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 00:12:16.304335
- Title: Embedding Graphs on Grassmann Manifold
- Title(参考訳): グラスマン多様体上の埋め込みグラフ
- Authors: Bingxin Zhou, Xuebin Zheng, Yu Guang Wang, Ming Li, Junbin Gao
- Abstract要約: 本稿では,グラスマン多様体に近似した2階グラフ特性を組み込んだ新しいグラフ表現学習手法EGGを提案する。
EGGの有効性はノードレベルとグラフレベルでのクラスタリングと分類タスクの両方を用いて示される。
- 参考スコア(独自算出の注目度): 31.42901131602713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning efficient graph representation is the key to favorably addressing
downstream tasks on graphs, such as node or graph property prediction. Given
the non-Euclidean structural property of graphs, preserving the original graph
data's similarity relationship in the embedded space needs specific tools and a
similarity metric. This paper develops a new graph representation learning
scheme, namely EGG, which embeds approximated second-order graph
characteristics into a Grassmann manifold. The proposed strategy leverages
graph convolutions to learn hidden representations of the corresponding
subspace of the graph, which is then mapped to a Grassmann point of a low
dimensional manifold through truncated singular value decomposition (SVD). The
established graph embedding approximates denoised correlationship of node
attributes, as implemented in the form of a symmetric matrix space for
Euclidean calculation. The effectiveness of EGG is demonstrated using both
clustering and classification tasks at the node level and graph level. It
outperforms baseline models on various benchmarks.
- Abstract(参考訳): 効率的なグラフ表現の学習は、ノードやグラフプロパティの予測など、グラフ上の下流タスクに好意的に対処する鍵である。
グラフの非ユークリッド構造的性質を考えると、埋め込み空間における元のグラフデータの類似性関係を保つには、特定のツールと類似度メートル法が必要である。
本稿では,グラスマン多様体に近似した2階グラフ特性を組み込んだ新しいグラフ表現学習手法EGGを提案する。
提案した戦略はグラフ畳み込みを利用してグラフの対応する部分空間の隠れ表現を学習し、そのグラフはトランケートされた特異値分解(SVD)を通して低次元多様体のグラスマン点に写像される。
確立されたグラフ埋め込みは、ユークリッド計算のための対称行列空間の形で実装されたノード属性の分解相関を近似する。
EGGの有効性はノードレベルとグラフレベルでのクラスタリングと分類タスクの両方を用いて示される。
様々なベンチマークでベースラインモデルを上回っている。
関連論文リスト
- Graph Transformer GANs with Graph Masked Modeling for Architectural
Layout Generation [153.92387500677023]
本稿では,グラフノード関係を効果的に学習するために,GTGAN(Graph Transformer Generative Adversarial Network)を提案する。
提案したグラフ変換器エンコーダは、局所的およびグローバルな相互作用をモデル化するために、Transformer内のグラフ畳み込みと自己アテンションを組み合わせる。
また,グラフ表現学習のための自己指導型事前学習手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T14:36:38Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
既存のグラフ凝縮法は、凝縮グラフ内のノードと構造の合同最適化に依存している。
我々は、大規模グラフを小さなグラフノード集合に蒸留する、SFGCと呼ばれる新しい構造自由グラフ凝縮パラダイムを提唱する。
論文 参考訳(メタデータ) (2023-06-05T07:53:52Z) - Demystifying Graph Convolution with a Simple Concatenation [6.542119695695405]
グラフトポロジ、ノード特徴、ラベル間の重なり合う情報を定量化する。
グラフの畳み込みは、グラフの畳み込みに代わる単純だが柔軟な代替手段であることを示す。
論文 参考訳(メタデータ) (2022-07-18T16:39:33Z) - A Representation Learning Framework for Property Graphs [33.04077644004356]
グラフ埋め込み処理にノード特性とエッジ特性を組み込んだグラフ表現学習フレームワークであるPGEを提案する。
実世界のデータセット上でのノード分類やリンク予測などのベンチマークアプリケーションにおいて,PGEが最先端のグラフ埋め込み手法よりも優れた埋め込み結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-27T10:36:57Z) - Accurate Learning of Graph Representations with Graph Multiset Pooling [45.72542969364438]
本稿では,その構造的依存関係に応じてノード間の相互作用をキャプチャするグラフマルチセットトランス (GMT) を提案する。
実験の結果,GMTはグラフ分類ベンチマークにおいて,最先端のグラフプーリング法を著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-02-23T07:45:58Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Wasserstein Embedding for Graph Learning [33.90471037116372]
Wasserstein Embedding for Graph Learning (WEGL)は、グラフ全体をベクトル空間に埋め込むフレームワークである。
グラフ間の類似性をノード埋め込み分布間の類似性の関数として定義する上で,新たな知見を活用する。
各種ベンチマークグラフ固有性予測タスクにおける新しいグラフ埋め込み手法の評価を行った。
論文 参考訳(メタデータ) (2020-06-16T18:23:00Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
グラフオートエンコーダ(GAE)は、グラフ埋め込みのための表現学習において強力なツールである。
本稿では,2つの新しい教師なしグラフ埋め込み法,適応グラフ学習(BAGE)による教師なしグラフ埋め込み,変分適応グラフ学習(VBAGE)による教師なしグラフ埋め込みを提案する。
いくつかのデータセットに関する実験的研究により、我々の手法がノードクラスタリング、ノード分類、グラフ可視化タスクにおいて、ベースラインよりも優れていることが実証された。
論文 参考訳(メタデータ) (2020-03-10T02:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。