論文の概要: Level Up with ML Vulnerability Identification: Leveraging Domain Constraints in Feature Space for Robust Android Malware Detection
- arxiv url: http://arxiv.org/abs/2205.15128v4
- Date: Tue, 24 Dec 2024 10:48:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:52:51.997257
- Title: Level Up with ML Vulnerability Identification: Leveraging Domain Constraints in Feature Space for Robust Android Malware Detection
- Title(参考訳): ML脆弱性同定によるレベルアップ:ロバストなAndroidマルウェア検出のための特徴空間におけるドメイン制約の活用
- Authors: Hamid Bostani, Zhengyu Zhao, Zhuoran Liu, Veelasha Moonsamy,
- Abstract要約: 機能領域におけるAndroidドメイン制約の解釈を新たに導入し,その後にそれらを学ぶ新しいテクニックを紹介した。
種々の回避攻撃に対する経験的評価は、学習領域の制約を用いて、平均89.6%のAEを効果的に検出できることを示唆している。
- 参考スコア(独自算出の注目度): 7.43688977703696
- License:
- Abstract: Machine Learning (ML) promises to enhance the efficacy of Android Malware Detection (AMD); however, ML models are vulnerable to realistic evasion attacks--crafting realizable Adversarial Examples (AEs) that satisfy Android malware domain constraints. To eliminate ML vulnerabilities, defenders aim to identify susceptible regions in the feature space where ML models are prone to deception. The primary approach to identifying vulnerable regions involves investigating realizable AEs, but generating these feasible apps poses a challenge. For instance, previous work has relied on generating either feature-space norm-bounded AEs or problem-space realizable AEs in adversarial hardening. The former is efficient but lacks full coverage of vulnerable regions while the latter can uncover these regions by satisfying domain constraints but is known to be time-consuming. To address these limitations, we propose an approach to facilitate the identification of vulnerable regions. Specifically, we introduce a new interpretation of Android domain constraints in the feature space, followed by a novel technique that learns them. Our empirical evaluations across various evasion attacks indicate effective detection of AEs using learned domain constraints, with an average of 89.6%. Furthermore, extensive experiments on different Android malware detectors demonstrate that utilizing our learned domain constraints in Adversarial Training (AT) outperforms other AT-based defenses that rely on norm-bounded AEs or state-of-the-art non-uniform perturbations. Finally, we show that retraining a malware detector with a wide variety of feature-space realizable AEs results in a 77.9% robustness improvement against realizable AEs generated by unknown problem-space transformations, with up to 70x faster training than using problem-space realizable AEs.
- Abstract(参考訳): 機械学習(ML)は、Android Malware Detection(AMD)の有効性を高めることを約束するが、MLモデルは現実的な回避攻撃に対して脆弱である。
MLの脆弱性を排除するため、ディフェンダーは、MLモデルが騙されやすい機能領域の感受性領域を特定することを目指している。
脆弱性のあるリージョンを特定するための主要なアプローチは、実現可能なAEを調べることだが、これらの実現可能なアプリを生成することは、課題となる。
例えば、以前の研究は、特徴空間ノルム有界AEsか、逆方向硬化における問題空間実現可能なAEsのいずれかを生成することに頼っていた。
前者は効率的だが、脆弱性のあるリージョンを完全にカバーしていない。後者はドメインの制約を満たすことでこれらのリージョンを発見できるが、時間を要することが知られている。
これらの制限に対処するため,脆弱領域の同定を容易にするアプローチを提案する。
具体的には、機能領域におけるAndroidドメイン制約の新たな解釈を導入し、その後にそれらを学ぶ新しいテクニックを紹介します。
種々の回避攻撃に対する経験的評価は、学習領域制約によるAEの効果的な検出を平均89.6%で示している。
さらに、さまざまなAndroidマルウェア検出装置に関する広範な実験により、AT(Adversarial Training)における学習領域の制約を利用することで、標準境界のAEや最先端の非一様摂動に依存する他のATベースの防御よりも優れていることが示された。
最後に,多種多様な特徴空間実現可能なAEを用いてマルウェア検出装置をリトレーニングした結果,未知の問題空間変換によって生成される実現可能なAEに対して77.9%の堅牢性向上が達成され,問題空間実現可能なAEよりも最大70倍高速なトレーニングが実現された。
関連論文リスト
- Attention Tracker: Detecting Prompt Injection Attacks in LLMs [62.247841717696765]
大型言語モデル (LLM) は様々なドメインに革命をもたらしたが、インジェクション攻撃に弱いままである。
そこで本研究では,特定の注意点が本来の指示から注入指示へと焦点を移す,注意散逸効果の概念を紹介した。
本研究では,アテンション・トラッカーを提案する。アテンション・トラッカーは,インジェクション・アタックを検出するために,インストラクション上の注意パターンを追跡する訓練不要な検出手法である。
論文 参考訳(メタデータ) (2024-11-01T04:05:59Z) - Effective and Efficient Adversarial Detection for Vision-Language Models via A Single Vector [97.92369017531038]
Diverse hArmful Responses (RADAR) を用いた新しい laRge-scale Adervsarial 画像データセットを構築した。
そこで我々は,視覚言語モデル (VLM) の隠れ状態から抽出した1つのベクトルを利用して,入力中の良質な画像に対して対向画像を検出する,新しいiN時間埋め込み型AdveRSarial Image Detectction (NEARSIDE) 法を開発した。
論文 参考訳(メタデータ) (2024-10-30T10:33:10Z) - Improving Adversarial Robustness in Android Malware Detection by Reducing the Impact of Spurious Correlations [3.7937308360299116]
機械学習(ML)は、Androidのマルウェア検出(AMD)において大きな進歩を見せている。
しかし、現実的な回避攻撃に対するMLのレジリエンスは、AMDにとって大きな障害である。
本研究では,マルウェアサンプルとAEの分布を調整することで,AMDの一般化性を向上させるための領域適応手法を提案する。
論文 参考訳(メタデータ) (2024-08-27T17:01:12Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - MixDefense: A Defense-in-Depth Framework for Adversarial Example
Detection Based on Statistical and Semantic Analysis [14.313178290347293]
AE検出のための多層ディフェンス・イン・ディープス・フレームワーク(MixDefense)を提案する。
入力から抽出した雑音の特徴を利用して、自然画像と改ざん画像の統計的差異を抽出し、AE検出を行う。
提案したMixDefenseソリューションは,既存のAE検出技術よりもかなり優れていることを示す。
論文 参考訳(メタデータ) (2021-04-20T15:57:07Z) - Universal Adversarial Perturbations for Malware [15.748648955898528]
universal adversarial perturbation (uaps) は入力空間全体に一般化するノイズパターンを特定する。
マルウェア分類におけるUAPの課題と強みについて検討する。
本稿では,問題空間変換に基づく知識を用いた逆トレーニングに基づく緩和を提案する。
論文 参考訳(メタデータ) (2021-02-12T20:06:10Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - SLAP: Improving Physical Adversarial Examples with Short-Lived
Adversarial Perturbations [19.14079118174123]
Short-Lived Adrial Perturbations (SLAP) は、光プロジェクターを用いて、敵が物理的に堅牢な現実世界のAEを実現できる新しい技術である。
SLAPは、敵のパッチよりも敵の攻撃に対するコントロールを大きくする。
自動走行シナリオにおけるSLAPの実現可能性について検討し,物体検出タスクと交通標識認識タスクの両方を対象として検討した。
論文 参考訳(メタデータ) (2020-07-08T14:11:21Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z) - Intriguing Properties of Adversarial ML Attacks in the Problem Space [Extended Version] [18.3238686304247]
問題空間における敵ML回避攻撃の一般化を提案する。
セマンティクスやアーティファクトの観点から過去の制限を克服する,Androidマルウェアに対する新たな問題空間攻撃を提案する。
我々の結果は、"サービスとしてのアドバイサル・マルウェア"が現実的な脅威であることを示している。
論文 参考訳(メタデータ) (2019-11-05T23:39:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。