論文の概要: AMED: Automatic Mixed-Precision Quantization for Edge Devices
- arxiv url: http://arxiv.org/abs/2205.15437v2
- Date: Mon, 10 Jun 2024 11:35:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 06:17:55.007891
- Title: AMED: Automatic Mixed-Precision Quantization for Edge Devices
- Title(参考訳): AMED:エッジデバイスの自動混合精度量子化
- Authors: Moshe Kimhi, Tal Rozen, Avi Mendelson, Chaim Baskin,
- Abstract要約: 量子ニューラルネットワークは、レイテンシ、消費電力、モデルサイズをパフォーマンスに大きな影響を与えずに減少させることでよく知られている。
混合精度量子化は、異なるビット幅での算術演算をサポートするカスタマイズされたハードウェアのより良い利用を提供する。
- 参考スコア(独自算出の注目度): 3.5223695602582614
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Quantized neural networks are well known for reducing the latency, power consumption, and model size without significant harm to the performance. This makes them highly appropriate for systems with limited resources and low power capacity. Mixed-precision quantization offers better utilization of customized hardware that supports arithmetic operations at different bitwidths. Quantization methods either aim to minimize the compression loss given a desired reduction or optimize a dependent variable for a specified property of the model (such as FLOPs or model size); both make the performance inefficient when deployed on specific hardware, but more importantly, quantization methods assume that the loss manifold holds a global minimum for a quantized model that copes with the global minimum of the full precision counterpart. Challenging this assumption, we argue that the optimal minimum changes as the precision changes, and thus, it is better to look at quantization as a random process, placing the foundation for a different approach to quantize neural networks, which, during the training procedure, quantizes the model to a different precision, looks at the bit allocation as a Markov Decision Process, and then, finds an optimal bitwidth allocation for measuring specified behaviors on a specific device via direct signals from the particular hardware architecture. By doing so, we avoid the basic assumption that the loss behaves the same way for a quantized model. Automatic Mixed-Precision Quantization for Edge Devices (dubbed AMED) demonstrates its superiority over current state-of-the-art schemes in terms of the trade-off between neural network accuracy and hardware efficiency, backed by a comprehensive evaluation.
- Abstract(参考訳): 量子ニューラルネットワークは、レイテンシ、消費電力、モデルサイズをパフォーマンスに大きな影響を与えずに減少させることでよく知られている。
これにより、限られたリソースと低電力容量のシステムに非常に適している。
混合精度量子化は、異なるビット幅での算術演算をサポートするカスタマイズされたハードウェアのより良い利用を提供する。
量子化法は、所望の縮小が与えられたときの圧縮損失を最小限に抑えるか、モデルの特定の特性(FLOPやモデルサイズなど)に対して依存変数を最適化する。
この仮定に従うと、最適な最小限の変化は精度が変化するので、量子化をランダムなプロセスとして見て、トレーニング手順の間、モデルを異なる精度に量子化し、マルコフ決定プロセスとしてビット割り当てを見て、特定のハードウェアアーキテクチャからの直接信号を介して特定のデバイス上の特定の振る舞いを測定するのに最適なビット幅割当を求める、異なるアプローチの基盤を置く方がよい。
これにより、損失が量子化モデルと同じような振る舞いをするという基本的な仮定を避けることができる。
エッジデバイスの自動混合精度量子化(AMED)は、ニューラルネットワークの精度とハードウェア効率のトレードオフの観点から、現在の最先端のスキームよりも優位性を示している。
関連論文リスト
- Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip [0.9187138676564589]
本稿では,革新的な量子化学習手法である高粒度量子化(HGQ)を提案する。
HGQは、勾配降下によって最適化できるようにすることで、重量当たりおよび活動当たりの精度を微調整する。
このアプローチは、演算演算が可能なハードウェア上で、超低レイテンシと低電力ニューラルネットワークを実現する。
論文 参考訳(メタデータ) (2024-05-01T17:18:46Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - Mixed Precision Post Training Quantization of Neural Networks with
Sensitivity Guided Search [7.392278887917975]
混合精度量子化により、異なるテンソルを様々な数値精度のレベルに量子化することができる。
我々は,コンピュータビジョンと自然言語処理の手法を評価し,最大27.59%,34.31%のレイテンシ低減を実証した。
論文 参考訳(メタデータ) (2023-02-02T19:30:00Z) - Performance Optimization for Variable Bitwidth Federated Learning in
Wireless Networks [103.22651843174471]
本稿では,モデル量子化による統合学習(FL)における無線通信と計算効率の向上について考察する。
提案したビット幅FL方式では,エッジデバイスは局所FLモデルパラメータの量子化バージョンを調整し,コーディネートサーバに送信し,それらを量子化されたグローバルモデルに集約し,デバイスを同期させる。
FLトレーニングプロセスはマルコフ決定プロセスとして記述でき、反復よりも行動選択を最適化するためのモデルベース強化学習(RL)手法を提案する。
論文 参考訳(メタデータ) (2022-09-21T08:52:51Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Mixed Precision of Quantization of Transformer Language Models for
Speech Recognition [67.95996816744251]
トランスフォーマーが表現する最先端のニューラルネットワークモデルは、実用アプリケーションにとってますます複雑で高価なものになりつつある。
現在の低ビット量子化法は、均一な精度に基づいており、量子化エラーに対するシステムの異なる部分での様々な性能感度を考慮できない。
最適局所精度設定は2つの手法を用いて自動的に学習される。
Penn Treebank (PTB)とSwitchboard corpusによるLF-MMI TDNNシステムの試験を行った。
論文 参考訳(メタデータ) (2021-11-29T09:57:00Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
ディープニューラルネットワーク(DNN)モデルは、特にリソース制限されたデバイスにおいて、実用的なアプリケーションに不可欠である。
既往の非構造的あるいは構造化された重量刈り法は、推論を真に加速することはほとんど不可能である。
ハードウェア互換のマイクロ構造レベルでの一般化された重み統一フレームワークを提案し,高い圧縮と加速度を実現する。
論文 参考訳(メタデータ) (2021-06-15T17:22:59Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z) - FracBits: Mixed Precision Quantization via Fractional Bit-Widths [29.72454879490227]
混合精度量子化は、複数のビット幅での算術演算をサポートするカスタマイズハードウェアで好適である。
本稿では,目標計算制約下での混合精度モデルに基づく学習に基づく新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-04T06:09:09Z) - Automatic heterogeneous quantization of deep neural networks for
low-latency inference on the edge for particle detectors [5.609098985493794]
我々は,チップ上での最小エネルギー,高精度,ナノ秒の推論,完全自動展開のための,深層ニューラルネットワークモデルの最適ヘテロジニゼーションバージョンを設計する手法を提案する。
これはCERN大型ハドロン衝突型加速器における陽子-陽子衝突におけるイベント選択の手順に不可欠であり、リソースは厳密に制限され、$mathcal O(1)mu$sのレイテンシが要求される。
論文 参考訳(メタデータ) (2020-06-15T15:07:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。