論文の概要: Continual Object Detection: A review of definitions, strategies, and
challenges
- arxiv url: http://arxiv.org/abs/2205.15445v1
- Date: Mon, 30 May 2022 21:57:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 07:39:26.744085
- Title: Continual Object Detection: A review of definitions, strategies, and
challenges
- Title(参考訳): 連続オブジェクト検出:定義、戦略、課題のレビュー
- Authors: Angelo G. Menezes, Gustavo de Moura, C\'ezanne Alves, Andr\'e C. P. L.
F. de Carvalho
- Abstract要約: 連続学習の分野は、以前に学習したタスクのパフォーマンスを損なうことなく連続的なタスクを学習する能力を調べる。
我々は、ロボット工学や自動運転車における幅広い応用のために、連続物体検出の研究がさらに注目に値すると考えている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of Continual Learning investigates the ability to learn consecutive
tasks without losing performance on those previously learned. Its focus has
been mainly on incremental classification tasks. We believe that research in
continual object detection deserves even more attention due to its vast range
of applications in robotics and autonomous vehicles. This scenario is more
complex than conventional classification given the occurrence of instances of
classes that are unknown at the time, but can appear in subsequent tasks as a
new class to be learned, resulting in missing annotations and conflicts with
the background label. In this review, we analyze the current strategies
proposed to tackle the problem of class-incremental object detection. Our main
contributions are: (1) a short and systematic review of the methods that
propose solutions to traditional incremental object detection scenarios; (2) A
comprehensive evaluation of the existing approaches using a new metric to
quantify the stability and plasticity of each technique in a standard way; (3)
an overview of the current trends within continual object detection and a
discussion of possible future research directions.
- Abstract(参考訳): 連続学習の分野は、以前に学習したタスクのパフォーマンスを損なうことなく連続的なタスクを学習する能力を調べる。
主に段階的な分類に重点を置いている。
我々は、ロボット工学や自動運転車における幅広い応用のために、連続物体検出の研究がさらに注目に値すると考えている。
このシナリオは、当時未知だったクラスのインスタンスが発生すると、従来の分類よりも複雑になるが、後続のタスクで学習すべき新しいクラスとして現れるため、アノテーションの欠如と背景ラベルとの矛盾が生じる。
本稿では,クラスインクリメンタルオブジェクト検出の問題に対処するために提案されている現在の戦略について分析する。
1) 従来のインクリメンタルな物体検出シナリオに対する解決策を提案する手法の短期的かつ体系的なレビュー, (2) 標準的な方法で各手法の安定性と可塑性を定量化するための新しい指標を用いた既存手法の包括的評価,(3) 連続的物体検出における現在のトレンドの概要と今後の研究方向の考察。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - Continual Learning for Pose-Agnostic Object Recognition in 3D Point
Clouds [5.521693536291449]
この研究は、オブジェクトのポーズが動的かつ予測不能に変化する、ポーズに依存しない連続的な学習タスクに焦点を当てる。
本稿では,従来のタスクの幾何等値情報を効果的に蒸留する連続学習モデルを提案する。
実験により,本手法はいくつかの主流クラウドデータセットにおいて,ポーズに依存しないシナリオの課題を克服することを示した。
論文 参考訳(メタデータ) (2022-09-11T11:31:39Z) - A Multi-label Continual Learning Framework to Scale Deep Learning
Approaches for Packaging Equipment Monitoring [57.5099555438223]
連続シナリオにおけるマルチラベル分類を初めて研究した。
タスク数に関して対数的複雑性を持つ効率的なアプローチを提案する。
我々は,包装業界における実世界のマルチラベル予測問題に対するアプローチを検証した。
論文 参考訳(メタデータ) (2022-08-08T15:58:39Z) - Susceptibility of Continual Learning Against Adversarial Attacks [1.3749490831384268]
本研究では,現在および以前取得したタスクを含む継続的な学習課題の敵攻撃に対する感受性について検討する。
このような学習タスクの攻撃に対する感受性や脆弱性は、データの完全性とプライバシに関する深刻な懸念を引き起こす。
本稿では,正規化に基づく3つの手法,リプレイに基づく3つのアプローチ,リプレイと模範的アプローチを組み合わせた1つのハイブリッド手法の堅牢性について検討する。
論文 参考訳(メタデータ) (2022-07-11T23:45:12Z) - Single Object Tracking: A Survey of Methods, Datasets, and Evaluation
Metrics [0.0]
本稿では、以下の対象の異なる戦略を検査し、包括的分類を示す。
本論文の最も中心となるのは, 学習に基づく戦略であり, 生成戦略, 差別戦略, 強化学習の3つのカテゴリに分類される。
一般的に使用されるさまざまなデータセットと評価方法が導入される。
論文 参考訳(メタデータ) (2022-01-31T08:45:50Z) - Continual Novelty Detection [37.43667292607965]
連続学習は新規性検出アルゴリズムの動作に影響を及ぼし、新規性検出は連続学習者の動作に関する洞察を特定できることを示す。
この2つの問題の結合は、ビジョンモデルを実践するための有望な方向であると考えています。
論文 参考訳(メタデータ) (2021-06-24T12:30:41Z) - Weakly Supervised Object Localization and Detection: A Survey [145.5041117184952]
オブジェクトのローカライゼーションと検出は、新しい世代のコンピュータビジョンシステムを開発する上で重要な役割を果たす。
本稿では,(1)古典的モデル,(2)既成の深層ネットワークの特徴表現を用いたアプローチ,(3)ディープラーニングのみに基づくアプローチ,(4)この分野で広く利用されている公開データセットと標準評価指標についてレビューする。
この分野における重要な課題、この分野の開発履歴、各カテゴリーの手法の利点/欠点、異なるカテゴリーの方法間の関係、弱い監督対象のローカリゼーションおよび検出方法の適用、およびこの研究分野の開発をさらに促進するための潜在的な将来の方向性について議論します。
論文 参考訳(メタデータ) (2021-04-16T06:44:50Z) - Deep Learning for Anomaly Detection: A Review [150.9270911031327]
本稿では,3つの高レベルカテゴリと11の細粒度カテゴリの進歩を網羅した包括的分類法による深部異常検出の研究について調査する。
我々は、それらの重要な直観、客観的機能、基礎となる仮定、利点とデメリットをレビューし、上記の課題にどのように対処するかについて議論する。
論文 参考訳(メタデータ) (2020-07-06T02:21:16Z) - Incremental Object Detection via Meta-Learning [77.55310507917012]
本稿では,段階的タスク間の情報を最適に共有するように,モデル勾配を再形成するメタラーニング手法を提案する。
既存のメタ学習法と比較して,本手法はタスク非依存であり,オブジェクト検出のための高容量モデルに新たなクラスやスケールを段階的に追加することができる。
論文 参考訳(メタデータ) (2020-03-17T13:40:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。