論文の概要: Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future
- arxiv url: http://arxiv.org/abs/2410.05577v1
- Date: Tue, 8 Oct 2024 00:25:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-01 17:58:21.820843
- Title: Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future
- Title(参考訳): 人工知能時代の水中物体検出の現状と課題
- Authors: Long Chen, Yuzhi Huang, Junyu Dong, Qi Xu, Sam Kwong, Huimin Lu, Huchuan Lu, Chongyi Li,
- Abstract要約: 水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
- 参考スコア(独自算出の注目度): 119.88454942558485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underwater object detection (UOD), aiming to identify and localise the objects in underwater images or videos, presents significant challenges due to the optical distortion, water turbidity, and changing illumination in underwater scenes. In recent years, artificial intelligence (AI) based methods, especially deep learning methods, have shown promising performance in UOD. To further facilitate future advancements, we comprehensively study AI-based UOD. In this survey, we first categorise existing algorithms into traditional machine learning-based methods and deep learning-based methods, and summarise them by considering learning strategy, experimental dataset, utilised features or frameworks, and learning stage. Next, we discuss the potential challenges and suggest possible solutions and new directions. We also perform both quantitative and qualitative evaluations of mainstream algorithms across multiple benchmark datasets by considering the diverse and biased experimental setups. Finally, we introduce two off-the-shelf detection analysis tools, Diagnosis and TIDE, which well-examine the effects of object characteristics and various types of errors on detectors. These tools help identify the strengths and weaknesses of detectors, providing insigts for further improvement. The source codes, trained models, utilised datasets, detection results, and detection analysis tools are public available at \url{https://github.com/LongChenCV/UODReview}, and will be regularly updated.
- Abstract(参考訳): 水中物体検出(UOD)は、水中画像やビデオ中の物体を識別・ローカライズすることを目的としており、光学的歪み、水の濁度、水中のシーンにおける照明の変化による重要な課題を提示する。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
今後の進歩を促進するため、我々はAIベースのUODを包括的に研究する。
本調査では,既存のアルゴリズムを従来の機械学習手法とディープラーニング手法に分類し,学習戦略,実験データセット,活用機能やフレームワーク,学習段階を考慮して要約する。
次に、潜在的な課題について議論し、可能な解決策と新しい方向性を提案する。
また、多種多様かつ偏りのある実験装置を考慮し、複数のベンチマークデータセットにまたがる主流アルゴリズムの定量的および定性的な評価を行う。
最後に,対象物の特徴や様々な種類のエラーが検出者に与える影響をよく調べる,既製の検出分析ツールである診断とTIDEを導入する。
これらのツールは検出器の強度と弱さを識別し、さらなる改善を図っている。
ソースコード、トレーニングされたモデル、使用済みデータセット、検出結果、検出分析ツールは、 \url{https://github.com/LongChenCV/UODReview}で公開されており、定期的に更新される。
関連論文リスト
- Semi-Supervised Object Detection: A Survey on Progress from CNN to Transformer [12.042768320132694]
本稿では,物体検出のための半教師付き学習における27の最先端開発について概説する。
データ拡張テクニック、擬似ラベル戦略、一貫性の正則化、敵の訓練方法などをカバーする。
我々は,既存の課題を克服し,物体検出のための半教師あり学習における新たな方向性を探るため,さらなる研究の関心を喚起することを目的としている。
論文 参考訳(メタデータ) (2024-07-11T12:58:13Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
水中画像強調(UIE)はコンピュータビジョン研究において重要な課題である。
多数のUIEアルゴリズムが開発されているにもかかわらず、網羅的で体系的なレビューはいまだに欠落している。
論文 参考訳(メタデータ) (2024-05-30T04:46:40Z) - Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Remote Sensing Object Detection Meets Deep Learning: A Meta-review of
Challenges and Advances [51.70835702029498]
本稿では,ディープラーニングに基づくRSOD手法の最近の成果を概観する。
RSODの主な課題として,マルチスケールオブジェクト検出,回転オブジェクト検出,弱いオブジェクト検出,小さなオブジェクト検出,限られた監視を伴うオブジェクト検出の5つを挙げる。
また、RSODの分野で広く使用されているベンチマークデータセットと評価指標、およびRSODのアプリケーションシナリオについてもレビューする。
論文 参考訳(メタデータ) (2023-09-13T06:48:32Z) - A Comprehensive Study on Object Detection Techniques in Unconstrained
Environments [0.0]
オブジェクト検出は、画像やビデオ内のオブジェクトを識別し、ローカライズすることを目的とした、コンピュータビジョンにおける重要なタスクである。
近年のディープラーニングと畳み込みニューラルネットワーク(CNN)の進歩により、オブジェクト検出技術の性能が大幅に向上した。
本稿では,制約のない環境下でのオブジェクト検出技術について,様々な課題,データセット,最先端のアプローチを含む包括的研究を行う。
論文 参考訳(メタデータ) (2023-04-11T15:45:03Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - A Survey on Deep Domain Adaptation and Tiny Object Detection Challenges,
Techniques and Datasets [11.911055871045715]
本研究では,コンピュータビジョンに基づく物体検出の課題と解法を,異なる手法を用いて分析した。
対象物検出に関わる課題を概説し, 歴史的, 比較分析による解を提示した。
論文 参考訳(メタデータ) (2021-07-16T14:33:31Z) - Data-efficient Weakly-supervised Learning for On-line Object Detection
under Domain Shift in Robotics [24.878465999976594]
文献では、Deep Convolutional Neural Networks (DCNNs)に基づく多数のオブジェクト検出方法が提案されている。
これらの手法はロボティクスに重要な制限がある:オフラインデータのみに学習するとバイアスが発生し、新しいタスクへの適応を防ぐことができる。
本研究では,弱い教師付き学習がこれらの問題にどのように対処できるかを検討する。
論文 参考訳(メタデータ) (2020-12-28T16:36:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。