論文の概要: IDE-3D: Interactive Disentangled Editing for High-Resolution 3D-aware
Portrait Synthesis
- arxiv url: http://arxiv.org/abs/2205.15517v1
- Date: Tue, 31 May 2022 03:35:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 14:20:13.409827
- Title: IDE-3D: Interactive Disentangled Editing for High-Resolution 3D-aware
Portrait Synthesis
- Title(参考訳): IDE-3D:高分解能3D画像合成のための対話型遠方編集
- Authors: Jingxiang Sun, Xuan Wang, Yichun Shi, Lizhen Wang, Jue Wang, Yebin Liu
- Abstract要約: システムを構成する3つの主要なコンポーネントは,(1)図形に一貫性のある,不整合な顔画像とセマンティックマスクを生成する3次元セマンティック認識生成モデル,(2)意味的およびテクスチャエンコーダから潜伏符号を初期化し,さらに忠実な再構築のために最適化するハイブリッドGANインバージョンアプローチ,(3)カノニカルビューにおけるセマンティックマスクの効率的な操作を可能にするカノニカルエディタ,の3つである。
- 参考スコア(独自算出の注目度): 38.517819699560945
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing 3D-aware facial generation methods face a dilemma in quality versus
editability: they either generate editable results in low resolution or
high-quality ones with no editing flexibility. In this work, we propose a new
approach that brings the best of both worlds together. Our system consists of
three major components: (1) a 3D-semantics-aware generative model that produces
view-consistent, disentangled face images and semantic masks; (2) a hybrid GAN
inversion approach that initialize the latent codes from the semantic and
texture encoder, and further optimized them for faithful reconstruction; and
(3) a canonical editor that enables efficient manipulation of semantic masks in
canonical view and product high-quality editing results. Our approach is
competent for many applications, e.g. free-view face drawing, editing, and
style control. Both quantitative and qualitative results show that our method
reaches the state-of-the-art in terms of photorealism, faithfulness, and
efficiency.
- Abstract(参考訳): 既存の3D対応の顔生成手法は品質と編集性にジレンマに直面し、低解像度で編集可能な結果を生成するか、編集の柔軟性のない高品質な結果を生成する。
本研究では,両世界の長所を一つにまとめる新たなアプローチを提案する。
システムを構成する3つの主要なコンポーネントは,(1)図形に一貫性のある,不整合な顔画像とセマンティックマスクを生成する3次元セマンティック認識生成モデル,(2)意味的およびテクスチャエンコーダから潜伏符号を初期化し,さらに忠実な再構成のために最適化するハイブリッドGANインバージョンアプローチ,(3)標準視におけるセマンティックマスクの効率的な操作を可能にするカノニカルエディタ,の3つである。
私たちのアプローチは、フリービューのフェイス描画、編集、スタイル制御など、多くのアプリケーションに適しています。
定量的・定性的な結果から,本手法はフォトリアリズム,忠実性,効率の面で最先端に到達した。
関連論文リスト
- Reference-Based 3D-Aware Image Editing with Triplanes [15.222454412573455]
GAN(Generative Adversarial Networks)は、高品質な画像生成と、潜伏空間を操作することで実際の画像編集のための強力なツールとして登場した。
GANの最近の進歩には、EG3Dのような3次元認識モデルが含まれており、単一の画像から3次元幾何学を再構築できる効率的な三面体ベースのアーキテクチャを備えている。
本研究では,先進的な参照ベース編集における三面体空間の有効性を探索し,実証することにより,このギャップを解消する。
論文 参考訳(メタデータ) (2024-04-04T17:53:33Z) - Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors [24.478875248825563]
単一画像の3次元操作を可能にする新しい画像編集手法を提案する。
本手法は,テキスト・イメージ・ペアの広い範囲で訓練された強力な画像拡散モデルを直接活用する。
提案手法では,高画質な3D画像編集が可能で,視点変換が大きく,外観や形状の整合性も高い。
論文 参考訳(メタデータ) (2024-03-18T06:18:59Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3Dは拡散モデルに基づく3Dアバター生成のためのテキスト・画像誘導生成モデルである。
我々のフレームワークは、トポロジカルかつ構造的に正しい幾何と高分解能なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-18T17:55:47Z) - In-N-Out: Faithful 3D GAN Inversion with Volumetric Decomposition for Face Editing [28.790900756506833]
3D対応のGANは、2D対応の編集機能を保ちながら、ビュー合成のための新しい機能を提供する。
GANインバージョンは、入力画像や動画を再構成する潜時コードを求める重要なステップであり、この潜時コードを操作することで様々な編集タスクを可能にする。
我々は3次元GANの入力からOODオブジェクトを明示的にモデル化することでこの問題に対処する。
論文 参考訳(メタデータ) (2023-02-09T18:59:56Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - CGOF++: Controllable 3D Face Synthesis with Conditional Generative
Occupancy Fields [52.14985242487535]
生成した顔画像の3次元制御性を実現する条件付き3次元顔合成フレームワークを提案する。
中心となるのは条件付き生成操作場(cGOF++)であり、それによって生成された顔の形状が与えられた3Dモルファブルモデル(3DMM)メッシュに適合するように効果的に強制される。
提案手法の有効性を検証し, 最先端の2次元顔合成法よりも高精度な3次元制御性を示す実験を行った。
論文 参考訳(メタデータ) (2022-11-23T19:02:50Z) - 3D-FM GAN: Towards 3D-Controllable Face Manipulation [43.99393180444706]
3D-FM GANは、3D制御可能な顔操作に特化した新しい条件付きGANフレームワークである。
入力された顔画像と3D編集の物理的レンダリングの両方をStyleGANの潜在空間に注意深く符号化することにより、画像生成装置は高品質でアイデンティティを保存し、3D制御可能な顔操作を提供する。
提案手法は, 編集性の向上, アイデンティティの保存性の向上, 写真リアリズムの向上など, 様々なタスクにおいて, 先行技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T01:33:13Z) - Efficient Geometry-aware 3D Generative Adversarial Networks [50.68436093869381]
既存の3D GANは計算集約的であるか、3D一貫性のない近似を行う。
本研究では、3D GANの計算効率と画質をこれらの近似に頼らずに改善する。
本稿では,高解像度のマルチビュー一貫性画像だけでなく,高品質な3次元形状をリアルタイムに合成する,表現型ハイブリッド・明示型ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-15T08:01:43Z) - Towards Realistic 3D Embedding via View Alignment [53.89445873577063]
本稿では,3次元モデルを2次元背景画像に現実的に,かつ自動的に埋め込み,新たな画像を構成する,革新的なビューアライメントGAN(VA-GAN)を提案する。
VA-GANはテクスチャジェネレータとディファレンシャルディスクリミネーターで構成され、相互接続され、エンドツーエンドのトレーニングが可能である。
論文 参考訳(メタデータ) (2020-07-14T14:45:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。