Online Control of Adaptive Large Neighborhood Search using Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2211.00759v3
- Date: Wed, 3 Apr 2024 08:58:01 GMT
- Title: Online Control of Adaptive Large Neighborhood Search using Deep Reinforcement Learning
- Authors: Robbert Reijnen, Yingqian Zhang, Hoong Chuin Lau, Zaharah Bukhsh,
- Abstract summary: We introduce a Deep Reinforcement Learning based approach called DR-ALNS that selects operators, adjusts parameters, and controls the acceptance criterion throughout the search.
We evaluate the proposed method on a problem with orienteering weights and time windows, as presented in an IJCAI competition.
The results show that our approach outperforms vanilla ALNS, ALNS tuned with Bayesian optimization, and two state-of-the-art DRL approaches.
- Score: 4.374837991804085
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The Adaptive Large Neighborhood Search (ALNS) algorithm has shown considerable success in solving combinatorial optimization problems (COPs). Nonetheless, the performance of ALNS relies on the proper configuration of its selection and acceptance parameters, which is known to be a complex and resource-intensive task. To address this, we introduce a Deep Reinforcement Learning (DRL) based approach called DR-ALNS that selects operators, adjusts parameters, and controls the acceptance criterion throughout the search. The proposed method aims to learn, based on the state of the search, to configure ALNS for the next iteration to yield more effective solutions for the given optimization problem. We evaluate the proposed method on an orienteering problem with stochastic weights and time windows, as presented in an IJCAI competition. The results show that our approach outperforms vanilla ALNS, ALNS tuned with Bayesian optimization, and two state-of-the-art DRL approaches that were the winning methods of the competition, achieving this with significantly fewer training observations. Furthermore, we demonstrate several good properties of the proposed DR-ALNS method: it is easily adapted to solve different routing problems, its learned policies perform consistently well across various instance sizes, and these policies can be directly applied to different problem variants.
Related papers
- Joint Demonstration and Preference Learning Improves Policy Alignment with Human Feedback [58.049113055986375]
We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
arXiv Detail & Related papers (2024-06-11T01:20:53Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Stepsize Learning for Policy Gradient Methods in Contextual Markov
Decision Processes [35.889129338603446]
Policy-based algorithms are among the most widely adopted techniques in model-free RL.
They tend to struggle when asked to accomplish a series of heterogeneous tasks.
We introduce a new formulation, known as meta-MDP, that can be used to solve any hyper parameter selection problem in RL.
arXiv Detail & Related papers (2023-06-13T12:58:12Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Reinforcement Learning Methods for Wordle: A POMDP/Adaptive Control
Approach [0.3093890460224435]
We address the solution of the popular Wordle puzzle, using new reinforcement learning methods.
For the Wordle puzzle, they yield on-line solution strategies that are very close to optimal at relatively modest computational cost.
arXiv Detail & Related papers (2022-11-15T03:46:41Z) - Learning Adaptive Evolutionary Computation for Solving Multi-Objective
Optimization Problems [3.3266268089678257]
This paper proposes a framework that integrates MOEAs with adaptive parameter control using Deep Reinforcement Learning (DRL)
The DRL policy is trained to adaptively set the values that dictate the intensity and probability of mutation for solutions during optimization.
We show the learned policy is transferable, i.e., the policy trained on a simple benchmark problem can be directly applied to solve the complex warehouse optimization problem.
arXiv Detail & Related papers (2022-11-01T22:08:34Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
This paper presents a new reinforcement learning approach that is based on entropy.
In addition, we design an off-policy-based reinforcement learning technique that maximises the expected return.
We show that our model can generalise to various route problems.
arXiv Detail & Related papers (2022-05-31T09:51:48Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
We present SUNRISE, a simple unified ensemble method, which is compatible with various off-policy deep reinforcement learning algorithms.
SUNRISE integrates two key ingredients: (a) ensemble-based weighted Bellman backups, which re-weight target Q-values based on uncertainty estimates from a Q-ensemble, and (b) an inference method that selects actions using the highest upper-confidence bounds for efficient exploration.
arXiv Detail & Related papers (2020-07-09T17:08:44Z) - Reinforcement Learning for Combinatorial Optimization: A Survey [12.323976053967066]
Many traditional algorithms for solving optimization problems involve using hand-crafteds that sequentially construct a solution.
Reinforcement learning (RL) proposes a good alternative to automate the search of theses by training an agent in a supervised or self-supervised manner.
arXiv Detail & Related papers (2020-03-07T16:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.