論文の概要: Enhanced Teaching-Learning-based Optimization for 3D Path Planning of
Multicopter UAVs
- arxiv url: http://arxiv.org/abs/2205.15913v1
- Date: Tue, 31 May 2022 16:00:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-01 16:09:31.252289
- Title: Enhanced Teaching-Learning-based Optimization for 3D Path Planning of
Multicopter UAVs
- Title(参考訳): マルチコプターUAVの3次元経路計画のための教師学習による最適化
- Authors: Van Truong Hoang and Manh Duong Phung
- Abstract要約: 本稿では,無人航空機(UAV)の新しい経路計画アルゴリズムを提案する。
まず,UAVの移動と安全操作の制約と経路長の要件を組み込んだ目的関数を定義する。
次に, 目的関数の定式化を最小化するために, Multi-subject TLBO というアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.0305676256390934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a new path planning algorithm for unmanned aerial
vehicles (UAVs) based on the teaching-learning-based optimization (TLBO)
technique. We first define an objective function that incorporates requirements
on the path length and constraints on the movement and safe operation of UAVs
to convert the path planning into an optimization problem. The optimization
algorithm named Multi-subject TLBO is then proposed to minimize the formulated
objective function. The algorithm is developed based on TLBO but enhanced with
new operations including mutation, elite selection and multi-subject training
to improve the solution quality and speed up the convergence rate. Comparison
with state-of-the-art algorithms and experiments with real UAVs have been
conducted to evaluate the performance of the proposed algorithm. The results
confirm its validity and effectiveness in generating optimal, collision-free
and flyable paths for UAVs in complex operating environments.
- Abstract(参考訳): 本稿では,Linging-learning-based optimization (TLBO) に基づく無人航空機(UAV)の経路計画アルゴリズムを提案する。
まず,経路長の要件と移動に対する制約,および経路計画を最適化問題に変換するためのuavの安全な操作を組み込んだ目的関数を定義する。
次に、定式化された目的関数を最小化するためにマルチサブジェクトtlboという最適化アルゴリズムを提案する。
このアルゴリズムはtlboに基づいて開発されているが、突然変異、エリート選択、マルチサブジェクトトレーニングなどの新しい操作により、ソリューションの品質向上と収束速度の向上が図られている。
提案アルゴリズムの性能を評価するために,最先端のアルゴリズムと実際のUAVを用いた実験を行った。
その結果, 複雑な運用環境下でのUAVの最適・無衝突・飛行可能経路の生成の有効性と有効性を確認した。
関連論文リスト
- UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Current Effect-eliminated Optimal Target Assignment and Motion Planning
for a Multi-UUV System [4.62588687215906]
本稿では,海流がもたらす複雑さと課題に対処する革新的なアプローチ(CBNNTAP)を提案する。
バイオインスパイアされたニューラルネットワーク(BINN)アプローチを取り入れ、個々のUUVの最も効率的なパスを予測する。
CBNNTAPアルゴリズムにおける重要な革新は、海流の破壊的な影響に対処する能力である。
論文 参考訳(メタデータ) (2024-01-10T19:38:25Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - Fast and computationally efficient generative adversarial network
algorithm for unmanned aerial vehicle-based network coverage optimization [1.2853186701496802]
移動ネットワークにおける動的な交通需要の課題は、無人航空機をベースとした移動セルに対処されている。
将来,無人航空機の膨大な可能性を考えると,カバー範囲最適化のための新しいアルゴリズムを提案する。
提案アルゴリズムは,一意の多層和プーリング損失関数を持つ条件付き生成逆ニューラルネットワークに基づいて実装された。
論文 参考訳(メタデータ) (2022-03-25T12:13:21Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Safety-enhanced UAV Path Planning with Spherical Vector-based Particle
Swarm Optimization [5.076419064097734]
本稿では,無人航空機(UAV)の経路計画問題に対処するため,球面ベクトルベース粒子群最適化 (SPSO) という新しいアルゴリズムを提案する。
コスト関数が最初に定式化され、経路計画がUAVの実用的で安全な運用に必要な要件と制約を組み込んだ最適化問題に変換される。
SPSOは、UAVの構成空間を効率的に探索することでコスト関数を最小化する最適経路を見つけるために使用される。
論文 参考訳(メタデータ) (2021-04-13T06:45:11Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T17:38:48Z) - Learning to be Global Optimizer [28.88646928299302]
いくつかのベンチマーク関数に対して最適なネットワークとエスケープ能力アルゴリズムを学習する。
学習したアルゴリズムは、よく知られた古典最適化アルゴリズムよりも大幅に優れていることを示す。
論文 参考訳(メタデータ) (2020-03-10T03:46:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。