論文の概要: Fast and computationally efficient generative adversarial network
algorithm for unmanned aerial vehicle-based network coverage optimization
- arxiv url: http://arxiv.org/abs/2203.13607v1
- Date: Fri, 25 Mar 2022 12:13:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-28 18:16:24.704066
- Title: Fast and computationally efficient generative adversarial network
algorithm for unmanned aerial vehicle-based network coverage optimization
- Title(参考訳): 無人航空機によるネットワークカバレッジ最適化のための高速かつ効率的な生成逆ネットワークアルゴリズム
- Authors: Marek Ru\v{z}i\v{c}ka, Marcel Volo\v{s}in, Juraj Gazda, Taras
Maksymyuk, Longzhe Han, Mischa Dohler
- Abstract要約: 移動ネットワークにおける動的な交通需要の課題は、無人航空機をベースとした移動セルに対処されている。
将来,無人航空機の膨大な可能性を考えると,カバー範囲最適化のための新しいアルゴリズムを提案する。
提案アルゴリズムは,一意の多層和プーリング損失関数を持つ条件付き生成逆ニューラルネットワークに基づいて実装された。
- 参考スコア(独自算出の注目度): 1.2853186701496802
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The challenge of dynamic traffic demand in mobile networks is tackled by
moving cells based on unmanned aerial vehicles. Considering the tremendous
potential of unmanned aerial vehicles in the future, we propose a new heuristic
algorithm for coverage optimization. The proposed algorithm is implemented
based on a conditional generative adversarial neural network, with a unique
multilayer sum-pooling loss function. To assess the performance of the proposed
approach, we compare it with the optimal core-set algorithm and quasi-optimal
spiral algorithm. Simulation results show that the proposed approach converges
to the quasi-optimal solution with a negligible difference from the global
optimum while maintaining a quadratic complexity regardless of the number of
users.
- Abstract(参考訳): モバイルネットワークにおける動的な交通需要の課題は、無人航空機に基づく移動セルによって解決される。
今後,無人航空機の膨大な可能性を考慮し,カバレッジ最適化のための新しいヒューリスティックアルゴリズムを提案する。
提案アルゴリズムは,一意の多層和プーリング損失関数を持つ条件付き生成逆ニューラルネットワークに基づいて実装された。
提案手法の性能を評価するために,最適コアセットアルゴリズムと準最適スパイラルアルゴリズムとの比較を行った。
シミュレーションの結果,提案手法はユーザ数によらず二次複雑性を維持しつつ,大域的最適値と不可分な差を持つ準最適解に収束することがわかった。
関連論文リスト
- Learn to Solve Vehicle Routing Problems ASAP: A Neural Optimization Approach for Time-Constrained Vehicle Routing Problems with Finite Vehicle Fleet [0.0]
車両の車両サイズが有限である時間制約付静電容量VRPを解くためのNCO手法を提案する。
この手法は、柔軟性と堅牢な一般化の両方を示す、適切で費用効率のよい解を見つけることができる。
論文 参考訳(メタデータ) (2024-11-07T15:16:36Z) - Composite Optimization Algorithms for Sigmoid Networks [3.160070867400839]
線形化近位アルゴリズムと乗算器の交互方向に基づく合成最適化アルゴリズムを提案する。
フランク関数のフィッティングに関する数値実験により、提案アルゴリズムは十分堅牢に機能することを示した。
論文 参考訳(メタデータ) (2023-03-01T15:30:29Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
モバイルネットワークの規模は、手作業による介入や手作業による戦略を使ってアンテナパラメータの最適化を困難にしている。
本研究では,モバイルネットワーク構成をグローバルに最適化するマルチエージェント強化学習アルゴリズムを提案する。
シミュレーション環境におけるアンテナ傾き調整問題とジョイント傾き・電力制御問題に対するアルゴリズムの性能を実証的に示す。
論文 参考訳(メタデータ) (2023-01-20T17:06:34Z) - High-Speed Resource Allocation Algorithm Using a Coherent Ising Machine
for NOMA Systems [3.6406488220483326]
NOMA手法の有効性を十分に活用する上で重要な課題は、リソース割り当ての最適化である。
NOMAシステムにおけるチャネル割り当てのためのコヒーレントIsing Machine(CIM)に基づく最適化手法を提案する。
提案手法は, 高速化と最適解の両面において優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T09:22:54Z) - Enhanced Teaching-Learning-based Optimization for 3D Path Planning of
Multicopter UAVs [2.0305676256390934]
本稿では,無人航空機(UAV)の新しい経路計画アルゴリズムを提案する。
まず,UAVの移動と安全操作の制約と経路長の要件を組み込んだ目的関数を定義する。
次に, 目的関数の定式化を最小化するために, Multi-subject TLBO というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-31T16:00:32Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
非直交多重アクセス(NOMA)は、5Gネットワーク以降で大規模なマシンタイプ通信(mMTC)を可能にする重要な技術です。
本稿では,高密度空間分散マルチセル無線IoTネットワークにおけるランダムアクセス効率向上のために,NOMAを適用した。
ユーザ期待容量の幾何学的平均を最大化するために,各IoTデバイスの伝送確率を調整したランダムチャネルアクセス管理の新たな定式化を提案する。
論文 参考訳(メタデータ) (2021-01-02T15:21:08Z) - Efficient Sampling-Based Maximum Entropy Inverse Reinforcement Learning
with Application to Autonomous Driving [35.44498286245894]
本稿では,効率的なサンプリングに基づく最大エントロピー逆強化学習(IRL)アルゴリズムを提案する。
提案アルゴリズムは,非対話的シナリオと対話的シナリオの両方を含む実運転データに基づいて評価する。
論文 参考訳(メタデータ) (2020-06-22T01:41:13Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
本稿では,ミリ波通信網における車とセルの関連性について検討する。
まず、ユーザ状態(VU)問題を離散的な非車両関連最適化問題として定式化する。
提案手法は,複数のベースライン設計と比較して,ユーザの複雑性とVUEの20%削減の合計で最大15%のゲインが得られる。
論文 参考訳(メタデータ) (2020-01-22T08:51:05Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
論文 参考訳(メタデータ) (2020-01-12T15:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。