論文の概要: Bias-inducing geometries: an exactly solvable data model with fairness
implications
- arxiv url: http://arxiv.org/abs/2205.15935v3
- Date: Mon, 13 Nov 2023 08:00:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 23:07:33.706628
- Title: Bias-inducing geometries: an exactly solvable data model with fairness
implications
- Title(参考訳): バイアス誘発測地:公正性を考慮した正確に解けるデータモデル
- Authors: Stefano Sarao Mannelli, Federica Gerace, Negar Rostamzadeh, Luca
Saglietti
- Abstract要約: 我々は、正確に解決可能なデータ不均衡の高次元モデルを導入する。
この合成フレームワークで訓練された学習モデルの典型的特性を解析的に解き放つ。
フェアネス評価によく用いられる観測対象の正確な予測値を得る。
- 参考スコア(独自算出の注目度): 13.690313475721094
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) may be oblivious to human bias but it is not immune to
its perpetuation. Marginalisation and iniquitous group representation are often
traceable in the very data used for training, and may be reflected or even
enhanced by the learning models. In the present work, we aim at clarifying the
role played by data geometry in the emergence of ML bias. We introduce an
exactly solvable high-dimensional model of data imbalance, where parametric
control over the many bias-inducing factors allows for an extensive exploration
of the bias inheritance mechanism. Through the tools of statistical physics, we
analytically characterise the typical properties of learning models trained in
this synthetic framework and obtain exact predictions for the observables that
are commonly employed for fairness assessment. Despite the simplicity of the
data model, we retrace and unpack typical unfairness behaviour observed on
real-world datasets. We also obtain a detailed analytical characterisation of a
class of bias mitigation strategies. We first consider a basic loss-reweighing
scheme, which allows for an implicit minimisation of different unfairness
metrics, and quantify the incompatibilities between some existing fairness
criteria. Then, we consider a novel mitigation strategy based on a matched
inference approach, consisting in the introduction of coupled learning models.
Our theoretical analysis of this approach shows that the coupled strategy can
strike superior fairness-accuracy trade-offs.
- Abstract(参考訳): 機械学習(ML)は人間の偏見には耐えられないかもしれないが、その永続性には免疫がない。
マージナライゼーションと不公平なグループ表現は、しばしば訓練に使用されるデータの中でトレース可能であり、学習モデルによって反映または強化される。
本研究では,MLバイアスの出現におけるデータ幾何学の役割を明らかにすることを目的とした。
バイアス誘導因子のパラメトリック制御によりバイアス継承機構の広範囲な探索が可能となる,データ不均衡の正確な解法可能な高次元モデルを提案する。
統計物理学のツールを用いて,本フレームワークで訓練された学習モデルの典型的特性を解析的に解析し,公正性評価に一般的に使用される観測対象の正確な予測を求める。
データモデルの単純さにもかかわらず、実世界のデータセットで観察される典型的な不公平な振る舞いを追跡および解き放つ。
また、バイアス緩和戦略のクラスを詳細に分析する特徴付けも取得する。
まず,不公平度尺度を暗黙的に最小化し,既存の公正度基準の不適合性を定量化する基本的損失補償方式を検討する。
そこで本研究では,協調学習モデルの導入による,マッチング推論手法に基づく新たな緩和戦略を検討する。
この手法の理論的解析は、結合戦略がより優れた公正-正確トレードオフを達成できることを示している。
関連論文リスト
- Understanding trade-offs in classifier bias with quality-diversity optimization: an application to talent management [2.334978724544296]
公正なAIモデルを開発する上での大きな課題は、そのようなモデルをトレーニングする上で利用可能なデータのバイアスにある。
本稿では,データセットに固有のバイアスを可視化し,公平性と正確性の間の潜在的なトレードオフを理解する方法を提案する。
論文 参考訳(メタデータ) (2024-11-25T22:14:02Z) - An Effective Theory of Bias Amplification [18.648588509429167]
機械学習モデルは、データに存在するバイアスをキャプチャして増幅し、社会的グループ間で異なるテストパフォーマンスをもたらす。
本稿では、従来のニューラルネットワークを単純化した状態下でモデル化するリッジ回帰の文脈において、正確な解析理論を提案する。
我々の理論は、機械学習バイアスの統一的で厳密な説明を提供し、バイアス増幅やマイノリティグループバイアスのような現象に関する洞察を提供する。
論文 参考訳(メタデータ) (2024-10-07T08:43:22Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
個々人の社会的偏見をきめ細かなキャリブレーションを可能にする新しいデバイアス・アプローチであるFairness Stamp(FAST)を提案する。
FASTは最先端のベースラインを超え、デバイアス性能が優れている。
これは、大きな言語モデルにおける公平性を達成するためのきめ細かいデバイアス戦略の可能性を強調している。
論文 参考訳(メタデータ) (2024-08-07T17:14:58Z) - Fair Multivariate Adaptive Regression Splines for Ensuring Equity and
Transparency [1.124958340749622]
学習過程に公平度を組み込んだMARSに基づく公正度予測モデルを提案する。
MARSは、特徴選択を行い、非線形関係を扱い、解釈可能な決定ルールを生成し、変数の最適分割基準を導出する非パラメトリック回帰モデルである。
実世界のデータにfairMARSモデルを適用し、精度とエクイティの観点からその有効性を実証する。
論文 参考訳(メタデータ) (2024-02-23T19:02:24Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - Non-Invasive Fairness in Learning through the Lens of Data Drift [88.37640805363317]
データや学習アルゴリズムを変更することなく、機械学習モデルの公平性を向上する方法を示す。
異なる集団間の傾向のばらつきと、学習モデルと少数民族間の連続的な傾向は、データドリフトと類似している。
このドリフトを解決するための2つの戦略(モデル分割とリウィーディング)を探索し、基礎となるデータに対するモデル全体の適合性を改善することを目的としている。
論文 参考訳(メタデータ) (2023-03-30T17:30:42Z) - Cross-model Fairness: Empirical Study of Fairness and Ethics Under Model Multiplicity [10.144058870887061]
1つの予測器が等しく機能するモデルのグループからアドホックに選択された場合、個人は害を受ける可能性があると我々は主張する。
これらの不公平性は実生活で容易に発見でき、技術的手段だけで緩和することは困難である可能性が示唆された。
論文 参考訳(メタデータ) (2022-03-14T14:33:39Z) - Learning from others' mistakes: Avoiding dataset biases without modeling
them [111.17078939377313]
最先端自然言語処理(NLP)モデルは、意図したタスクをターゲットとする機能ではなく、データセットのバイアスや表面形状の相関をモデル化することを学ぶことが多い。
これまでの研究は、バイアスに関する知識が利用できる場合に、これらの問題を回避するための効果的な方法を示してきた。
本稿では,これらの問題点を無視する学習モデルについて述べる。
論文 参考訳(メタデータ) (2020-12-02T16:10:54Z) - FAIR: Fair Adversarial Instance Re-weighting [0.7829352305480285]
本研究では,公正な予測を確実にするインスタンス重み付け関数の学習に敵対的トレーニングを利用するFair Adrial Instance Re-weighting(FAIR)手法を提案する。
我々の知る限りでは、これは、個々のインスタンスの公平性に関する解釈可能な情報を提供する重み付け関数によって、再重み付けと逆方向のアプローチをマージする最初のモデルである。
論文 参考訳(メタデータ) (2020-11-15T10:48:56Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。