Hide and Seek: on the Stealthiness of Attacks against Deep Learning
Systems
- URL: http://arxiv.org/abs/2205.15944v1
- Date: Tue, 31 May 2022 16:43:22 GMT
- Title: Hide and Seek: on the Stealthiness of Attacks against Deep Learning
Systems
- Authors: Zeyan Liu, Fengjun Li, Jingqiang Lin, Zhu Li, Bo Luo
- Abstract summary: We present the first large-scale study on the stealthiness of adversarial samples used in the attacks against deep learning.
We have implemented 20 representative adversarial ML attacks on six popular benchmarking datasets.
Our results show that the majority of the existing attacks introduce nonnegligible perturbations that are not stealthy to human eyes.
- Score: 15.733167372239432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the growing popularity of artificial intelligence and machine learning,
a wide spectrum of attacks against deep learning models have been proposed in
the literature. Both the evasion attacks and the poisoning attacks attempt to
utilize adversarially altered samples to fool the victim model to misclassify
the adversarial sample. While such attacks claim to be or are expected to be
stealthy, i.e., imperceptible to human eyes, such claims are rarely evaluated.
In this paper, we present the first large-scale study on the stealthiness of
adversarial samples used in the attacks against deep learning. We have
implemented 20 representative adversarial ML attacks on six popular
benchmarking datasets. We evaluate the stealthiness of the attack samples using
two complementary approaches: (1) a numerical study that adopts 24 metrics for
image similarity or quality assessment; and (2) a user study of 3 sets of
questionnaires that has collected 20,000+ annotations from 1,000+ responses.
Our results show that the majority of the existing attacks introduce
nonnegligible perturbations that are not stealthy to human eyes. We further
analyze the factors that contribute to attack stealthiness. We further examine
the correlation between the numerical analysis and the user studies, and
demonstrate that some image quality metrics may provide useful guidance in
attack designs, while there is still a significant gap between assessed image
quality and visual stealthiness of attacks.
Related papers
- Meta Invariance Defense Towards Generalizable Robustness to Unknown Adversarial Attacks [62.036798488144306]
Current defense mainly focuses on the known attacks, but the adversarial robustness to the unknown attacks is seriously overlooked.
We propose an attack-agnostic defense method named Meta Invariance Defense (MID)
We show that MID simultaneously achieves robustness to the imperceptible adversarial perturbations in high-level image classification and attack-suppression in low-level robust image regeneration.
arXiv Detail & Related papers (2024-04-04T10:10:38Z) - Unraveling Adversarial Examples against Speaker Identification --
Techniques for Attack Detection and Victim Model Classification [24.501269108193412]
Adversarial examples have proven to threaten speaker identification systems.
We propose a method to detect the presence of adversarial examples.
We also introduce a method for identifying the victim model on which the adversarial attack is carried out.
arXiv Detail & Related papers (2024-02-29T17:06:52Z) - Identifying Adversarially Attackable and Robust Samples [1.4213973379473654]
Adrial attacks insert small, imperceptible perturbations to input samples that cause large, undesired changes to the output of deep learning models.
This work introduces the notion of sample attackability, where we aim to identify samples that are most susceptible to adversarial attacks.
We propose a deep-learning-based detector to identify the adversarially attackable and robust samples in an unseen dataset for an unseen target model.
arXiv Detail & Related papers (2023-01-30T13:58:14Z) - Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
Human Activity Recognition (HAR) has been employed in a wide range of applications, e.g. self-driving cars.
Recently, the robustness of skeleton-based HAR methods have been questioned due to their vulnerability to adversarial attacks.
We show such threats exist, even when the attacker only has access to the input/output of the model.
We propose the very first black-box adversarial attack approach in skeleton-based HAR called BASAR.
arXiv Detail & Related papers (2022-11-21T09:51:28Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Learning to Detect Adversarial Examples Based on Class Scores [0.8411385346896413]
We take a closer look at adversarial attack detection based on the class scores of an already trained classification model.
We propose to train a support vector machine (SVM) on the class scores to detect adversarial examples.
We show that our approach yields an improved detection rate compared to an existing method, whilst being easy to implement.
arXiv Detail & Related papers (2021-07-09T13:29:54Z) - Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning [95.60856995067083]
This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
arXiv Detail & Related papers (2021-06-01T07:10:54Z) - Adversarial Attacks and Detection on Reinforcement Learning-Based
Interactive Recommender Systems [47.70973322193384]
Adversarial attacks pose significant challenges for detecting them at an early stage.
We propose attack-agnostic detection on reinforcement learning-based interactive recommendation systems.
We first craft adversarial examples to show their diverse distributions and then augment recommendation systems by detecting potential attacks.
arXiv Detail & Related papers (2020-06-14T15:41:47Z) - Temporal Sparse Adversarial Attack on Sequence-based Gait Recognition [56.844587127848854]
We demonstrate that the state-of-the-art gait recognition model is vulnerable to such attacks.
We employ a generative adversarial network based architecture to semantically generate adversarial high-quality gait silhouettes or video frames.
The experimental results show that if only one-fortieth of the frames are attacked, the accuracy of the target model drops dramatically.
arXiv Detail & Related papers (2020-02-22T10:08:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.