論文の概要: On Analyzing Generative and Denoising Capabilities of Diffusion-based
Deep Generative Models
- arxiv url: http://arxiv.org/abs/2206.00070v1
- Date: Tue, 31 May 2022 19:29:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 12:48:02.271504
- Title: On Analyzing Generative and Denoising Capabilities of Diffusion-based
Deep Generative Models
- Title(参考訳): 拡散型深層生成モデルの生成・分別能力解析について
- Authors: Kamil Deja, Anna Kuzina, Tomasz Trzci\'nski, Jakub M. Tomczak
- Abstract要約: 拡散に基づくDeep Generative Models (DDGM)は、生成モデルにおける最先端のパフォーマンスを提供する。
後方拡散過程において, 少量のノイズがどのように変換されるかを検討する。
- 参考スコア(独自算出の注目度): 18.018935233383935
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion-based Deep Generative Models (DDGMs) offer state-of-the-art
performance in generative modeling. Their main strength comes from their unique
setup in which a model (the backward diffusion process) is trained to reverse
the forward diffusion process, which gradually adds noise to the input signal.
Although DDGMs are well studied, it is still unclear how the small amount of
noise is transformed during the backward diffusion process. Here, we focus on
analyzing this problem to gain more insight into the behavior of DDGMs and
their denoising and generative capabilities. We observe a fluid transition
point that changes the functionality of the backward diffusion process from
generating a (corrupted) image from noise to denoising the corrupted image to
the final sample. Based on this observation, we postulate to divide a DDGM into
two parts: a denoiser and a generator. The denoiser could be parameterized by a
denoising auto-encoder, while the generator is a diffusion-based model with its
own set of parameters. We experimentally validate our proposition, showing its
pros and cons.
- Abstract(参考訳): 拡散に基づくDeep Generative Models (DDGM)は、生成モデルにおける最先端のパフォーマンスを提供する。
その主な強みは、モデル(後方拡散過程)が前方拡散過程を反転するように訓練され、入力信号にノイズが徐々に増加するというユニークな設定から来ている。
DDGMはよく研究されているが、後向き拡散過程においてどのように少量のノイズが変換されるかはいまだ不明である。
本稿では,DDGMの行動と,その認知・生成能力についてより深い知見を得るために,この問題の分析に焦点をあてる。
逆方向拡散過程の機能を変化させる流体遷移点をノイズから(破損した)画像を生成して、劣化した画像を最終サンプルに分解する。
本研究は,DDGMをデノイザとジェネレータの2つの部分に分割することを仮定する。
デノイザーはデノイジングオートエンコーダによってパラメータ化できるが、ジェネレータは独自のパラメータセットを持つ拡散ベースのモデルである。
提案の長所と短所を実験的に検証した。
関連論文リスト
- Diffusion Priors for Variational Likelihood Estimation and Image Denoising [10.548018200066858]
本稿では,現実の雑音に対処するために,逆拡散過程における適応的確率推定とMAP推定を提案する。
実世界の多様なデータセットの実験と分析により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-10-23T02:52:53Z) - Data Augmentation for Seizure Prediction with Generative Diffusion Model [26.967247641926814]
重症度予測は患者の生活改善に非常に重要である。
初期データと中間データの間の深刻な不均衡問題は、依然として大きな課題となっている。
データ拡張は、この問題を解決するための直感的な方法です。
DiffEEGと呼ばれる拡散モデルを用いた新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2023-06-14T05:44:53Z) - UDPM: Upsampling Diffusion Probabilistic Models [33.51145642279836]
拡散確率モデル(DDPM、Denoising Diffusion Probabilistic Models)は近年注目されている。
DDPMは逆プロセスを定義することによって複雑なデータ分布から高品質なサンプルを生成する。
生成逆数ネットワーク(GAN)とは異なり、拡散モデルの潜伏空間は解釈できない。
本研究では,デノナイズ拡散過程をUDPM(Upsampling Diffusion Probabilistic Model)に一般化することを提案する。
論文 参考訳(メタデータ) (2023-05-25T17:25:14Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
拡散モデルは、前方拡散段階と逆拡散段階の2つの段階に基づく深層生成モデルである。
拡散モデルは、既知の計算負荷にもかかわらず、生成したサンプルの品質と多様性に対して広く評価されている。
論文 参考訳(メタデータ) (2022-09-10T22:00:30Z) - Cold Diffusion: Inverting Arbitrary Image Transforms Without Noise [52.59444045853966]
画像劣化の選択を変更すれば,生成モデル全体のファミリを構築することができることを示す。
完全な決定論的モデルの成功は、拡散モデルに対するコミュニティの理解に疑問を投げかける。
論文 参考訳(メタデータ) (2022-08-19T15:18:39Z) - Diffusion-GAN: Training GANs with Diffusion [135.24433011977874]
GAN(Generative Adversarial Network)は、安定してトレーニングすることが難しい。
フォワード拡散チェーンを利用してインスタンスノイズを生成する新しいGANフレームワークであるDiffusion-GANを提案する。
我々は,Diffusion-GANにより,最先端のGANよりも高い安定性とデータ効率で,よりリアルな画像を生成することができることを示す。
論文 参考訳(メタデータ) (2022-06-05T20:45:01Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
拡散に基づく生成モデルは、逆拡散連鎖を推論してデータを生成する方法を学ぶ。
我々は、データが純粋なランダムノイズになるまで、より高速で安価にノイズを付加するアプローチを提案する。
提案手法は,拡散過程と学習可能な暗黙的前処理の両方によって付与された逆自動エンコーダとしてキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-02-19T20:18:49Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
拡散モデルには重要な欠点がある。純粋なガウスノイズから画像を生成するために数千ステップの反復を必要とするため、サンプリングが本質的に遅い。
ガウスノイズから始めることは不要であることを示す。代わりに、より優れた初期化を伴う単一前方拡散から始めると、逆条件拡散におけるサンプリングステップの数を大幅に減少させる。
ComeCloser-DiffuseFaster (CCDF)と呼ばれる新しいサンプリング戦略は、逆問題に対する既存のフィードフォワードニューラルネットワークアプローチが拡散モデルと相乗的に組み合わせられる方法について、新たな洞察を明らかにしている。
論文 参考訳(メタデータ) (2021-12-09T04:28:41Z) - Denoising Diffusion Gamma Models [91.22679787578438]
Denoising Diffusion Gamma Model (DDGM)を導入し、ガンマ分布からのノイズが画像および音声生成に改善をもたらすことを示す。
提案手法は,ガンマノイズを用いてトレーニング拡散過程の状態を効率的にサンプリングする能力を保持する。
論文 参考訳(メタデータ) (2021-10-10T10:46:31Z) - Non Gaussian Denoising Diffusion Models [91.22679787578438]
ガンマ分布からのノイズは、画像および音声生成のための改善された結果をもたらすことを示す。
また,拡散過程におけるガウス雑音の混合を用いることで,単一分布に基づく拡散過程における性能が向上することを示す。
論文 参考訳(メタデータ) (2021-06-14T16:42:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。