論文の概要: Data Augmentation for Seizure Prediction with Generative Diffusion Model
- arxiv url: http://arxiv.org/abs/2306.08256v1
- Date: Wed, 14 Jun 2023 05:44:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-16 20:30:01.087175
- Title: Data Augmentation for Seizure Prediction with Generative Diffusion Model
- Title(参考訳): 生成拡散モデルによる震度予測のためのデータ拡張
- Authors: Kai Shu, Yuchang Zhao, Le Wu, Aiping Liu, Ruobing Qian, and Xun Chen
- Abstract要約: 重症度予測は患者の生活改善に非常に重要である。
初期データと中間データの間の深刻な不均衡問題は、依然として大きな課題となっている。
データ拡張は、この問題を解決するための直感的な方法です。
DiffEEGと呼ばれる拡散モデルを用いた新しいデータ拡張手法を提案する。
- 参考スコア(独自算出の注目度): 26.967247641926814
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objective: Seizure prediction is of great importance to improve the life of
patients. The focal point is to distinguish preictal states from interictal
ones. With the development of machine learning, seizure prediction methods have
achieved significant progress. However, the severe imbalance problem between
preictal and interictal data still poses a great challenge, restricting the
performance of classifiers. Data augmentation is an intuitive way to solve this
problem. Existing data augmentation methods generate samples by overlapping or
recombining data. The distribution of generated samples is limited by original
data, because such transformations cannot fully explore the feature space and
offer new information. As the epileptic EEG representation varies among
seizures, these generated samples cannot provide enough diversity to achieve
high performance on a new seizure. As a consequence, we propose a novel data
augmentation method with diffusion model called DiffEEG. Methods: Diffusion
models are a class of generative models that consist of two processes.
Specifically, in the diffusion process, the model adds noise to the input EEG
sample step by step and converts the noisy sample into output random noise,
exploring the distribution of data by minimizing the loss between the output
and the noise added. In the denoised process, the model samples the synthetic
data by removing the noise gradually, diffusing the data distribution to
outward areas and narrowing the distance between different clusters. Results:
We compared DiffEEG with existing methods, and integrated them into three
representative classifiers. The experiments indicate that DiffEEG could further
improve the performance and shows superiority to existing methods. Conclusion:
This paper proposes a novel and effective method to solve the imbalanced
problem and demonstrates the effectiveness and generality of our method.
- Abstract(参考訳): 目的: 発作予測は患者の生活を改善する上で非常に重要である。
焦点は、先天状態と間天状態とを区別することである。
機械学習の発展により、発作予測法は大きな進歩を遂げた。
しかし, 先行データと間欠データとの間の深刻な不均衡問題は, 分類器の性能を制限し, 依然として大きな課題となっている。
データ拡張はこの問題を解決する直感的な方法である。
既存のデータ拡張手法はデータの重複や再結合によってサンプルを生成する。
生成したサンプルの分布は、特徴空間を完全に探索し、新しい情報を提供することができないため、元のデータによって制限される。
てんかんの脳波の表現は発作によって異なるため、これらのサンプルは新しい発作で高いパフォーマンスを達成するのに十分な多様性を提供することができない。
その結果,DiffEEGと呼ばれる拡散モデルを用いた新しいデータ拡張手法を提案する。
方法:拡散モデルは、2つのプロセスからなる生成モデルのクラスである。
具体的には、拡散過程において、入力脳波サンプルに段階的にノイズを付加し、ノイズを出力ランダムノイズに変換し、出力と付加されたノイズの損失を最小限にしてデータの分布を探索する。
離散化過程において、モデルはノイズを徐々に除去し、データ分布を外側に拡散させ、異なるクラスタ間の距離を狭めることによって合成データをサンプリングする。
結果: DiffEEGを既存の手法と比較し, 3つの代表的な分類器に統合した。
実験の結果、DiffEEGはパフォーマンスをさらに改善し、既存の手法よりも優れていることが示された。
結論: 本論文では, 不均衡を解消し, 本手法の有効性と汎用性を実証する手法を提案する。
関連論文リスト
- CCS: Controllable and Constrained Sampling with Diffusion Models via Initial Noise Perturbation [9.12693573953231]
生成出力の変化と初期雑音摂動のスケールの関係は拡散ODEサンプリングにより非常に線形である。
そこで我々は,新しい制御可能・制約付きサンプリング法 (CCS) と,所望の統計特性を持つ拡散モデルに対する新しい制御アルゴリズムを提案する。
その結果, CCS法は, 優れた試料品質と多様性を維持しつつ, より精密にサンプリングを制御できることが示唆された。
論文 参考訳(メタデータ) (2025-02-07T05:30:48Z) - Data Augmentation via Diffusion Model to Enhance AI Fairness [1.2979015577834876]
本稿では,AIフェアネスを改善するために合成データを生成する拡散モデルの可能性について検討する。
Tabular Denoising Diffusion Probabilistic Model (Tab-DDPM) を用いてデータ拡張を行った。
実験結果から,Tab-DDPMにより生成された合成データは,二項分類の公平性を向上させることが示された。
論文 参考訳(メタデータ) (2024-10-20T18:52:31Z) - DiffATR: Diffusion-based Generative Modeling for Audio-Text Retrieval [49.076590578101985]
ノイズから関節分布を生成する拡散型ATRフレームワーク(DiffATR)を提案する。
優れたパフォーマンスを持つAudioCapsとClothoデータセットの実験は、我々のアプローチの有効性を検証する。
論文 参考訳(メタデータ) (2024-09-16T06:33:26Z) - Improving EEG Classification Through Randomly Reassembling Original and Generated Data with Transformer-based Diffusion Models [12.703528969668062]
本稿では,トランスフォーマーを用いた拡散確率モデルとデータに基づく拡張手法を提案する。
脳波信号の特徴として,信号の事前処理を行う定数要素スケーリング手法を提案する。
提案手法は,生成したデータを時間領域の原データでランダムに再集合し,ビジナルデータを取得する。
論文 参考訳(メタデータ) (2024-07-20T06:58:14Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
変換過程を高速化する適応運動量サンプリング法を提案する。
提案手法は,2倍から5倍の速度で,より忠実な画像/グラフを小さなサンプリングステップで作成できることを示す。
論文 参考訳(メタデータ) (2024-05-22T15:20:27Z) - Diffusion Models with Deterministic Normalizing Flow Priors [23.212848643552395]
フローと拡散モデルを正規化する手法であるDiNof(textbfDi$ffusion with $textbfNo$rmalizing $textbff$low priors)を提案する。
標準画像生成データセットの実験は、既存の手法よりも提案手法の利点を実証している。
論文 参考訳(メタデータ) (2023-09-03T21:26:56Z) - Boosting Fast and High-Quality Speech Synthesis with Linear Diffusion [85.54515118077825]
本稿では, 常微分方程式に基づく線形拡散モデル(LinDiff)を提案する。
計算複雑性を低減するため、LinDiffでは、入力信号を小さなパッチに分割するパッチベースの処理アプローチを採用している。
我々のモデルは、より高速な合成速度で自己回帰モデルに匹敵する品質の音声を合成することができる。
論文 参考訳(メタデータ) (2023-06-09T07:02:43Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - Diffusion-GAN: Training GANs with Diffusion [135.24433011977874]
GAN(Generative Adversarial Network)は、安定してトレーニングすることが難しい。
フォワード拡散チェーンを利用してインスタンスノイズを生成する新しいGANフレームワークであるDiffusion-GANを提案する。
我々は,Diffusion-GANにより,最先端のGANよりも高い安定性とデータ効率で,よりリアルな画像を生成することができることを示す。
論文 参考訳(メタデータ) (2022-06-05T20:45:01Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
拡散に基づく生成モデルは、逆拡散連鎖を推論してデータを生成する方法を学ぶ。
我々は、データが純粋なランダムノイズになるまで、より高速で安価にノイズを付加するアプローチを提案する。
提案手法は,拡散過程と学習可能な暗黙的前処理の両方によって付与された逆自動エンコーダとしてキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-02-19T20:18:49Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
本稿では,エネルギーベースモデルから気軽に学習・サンプルできる拡散回復可能性法を提案する。
学習後、ガウスの白色雑音分布から初期化するサンプリングプロセスにより合成画像を生成することができる。
非条件 CIFAR-10 では,本手法は FID 9.58 と開始スコア 8.30 を達成する。
論文 参考訳(メタデータ) (2020-12-15T07:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。