Quantum speed limit from a quantum-state-diffusion method
- URL: http://arxiv.org/abs/2206.00321v2
- Date: Mon, 10 Jul 2023 16:21:21 GMT
- Title: Quantum speed limit from a quantum-state-diffusion method
- Authors: Wei Wu, Jun-Hong An
- Abstract summary: We propose a quantum-state-diffusion method to derive the quantum speed limit (QSL) of open systems.
The application of our scheme to a two-level system reveals that the system possesses an infinite speedup capacity in the noiseless case.
It is interesting to find that the capacity in the noiseless case is recovered in the non-Markovian dynamics as long as a bound state is formed in the energy spectrum of the total system.
- Score: 4.8229512034776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Characterizing the most efficient evolution, the quantum speed limit (QSL)
plays a significant role in quantum technology. How to generalize the
well-established QSL from closed systems to open systems has attracted much
attention. In contrast to the previous schemes to derive the QSL from the
reduced dynamics of open system, we propose a QSL bound from the point of view
of the total system consisting of the open system and its environment using a
quantum-state-diffusion method. The application of our scheme to a two-level
system reveals that the system possesses an infinite speedup capacity in the
noiseless case, which is destroyed by the environment under the Born-Markovian
approximation. It is interesting to find that the capacity in the noiseless
case is recovered in the non-Markovian dynamics as long as a bound state is
formed in the energy spectrum of the total system. Enriching the
characterization schemes of the QSL, our result provides an efficient way to
control the QSL of open systems.
Related papers
- Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Quantum Speed Limit for Time-Fractional Open Systems [4.501305807267217]
The Quantum Speed Limit (QSL) time captures the shortest time required for a quantum system to evolve between two states.
It is shown that the non-Markovian memory effects of the environment can accelerate the time-fractional quantum evolution.
A method to manipulate the non-Markovian dissipative dynamics of a time-fractional open quantum system is presented.
arXiv Detail & Related papers (2023-04-29T14:51:20Z) - Quantum Federated Learning with Entanglement Controlled Circuits and
Superposition Coding [44.89303833148191]
We develop a depth-controllable architecture of entangled slimmable quantum neural networks (eSQNNs)
We propose an entangled slimmable QFL (eSQFL) that communicates the superposition-coded parameters of eS-QNNs.
In an image classification task, extensive simulations corroborate the effectiveness of eSQFL.
arXiv Detail & Related papers (2022-12-04T03:18:03Z) - From Goldilocks to Twin Peaks: multiple optimal regimes for quantum
transport in disordered networks [68.8204255655161]
Open quantum systems theory has been successfully applied to predict the existence of environmental noise-assisted quantum transport.
This paper shows that a consistent subset of physically modelled transport networks can have at least two ENAQT peaks in their steady state transport efficiency.
arXiv Detail & Related papers (2022-10-21T10:57:16Z) - Quantum Simulation of Open Quantum Systems Using Density-Matrix
Purification [0.0]
We present a general framework for OQSs where the system's $d times d$ density matrix is recast as a $d2$ wavefunction.
We demonstrate this method on a two-level system in a zero temperature amplitude damping channel and a two-site quantum Ising model.
arXiv Detail & Related papers (2022-07-14T17:59:19Z) - Quantum speed limit of a noisy continuous-variable system [4.8229512034776]
The quantum speed limit (QSL) characterizes the latent capability in speeding up of the system.
Previous results showed that such a speedup capability is generally destroyed by the environment induced decoherence.
We propose a scheme to recover the speedup capability in a dissipative continuous-variable system.
arXiv Detail & Related papers (2022-07-06T05:07:49Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Shortcuts to Adiabaticity for Open Systems in Circuit Quantum
Electrodynamics [11.231358835691962]
We present the first experimental demonstration of shortcuts to adiabaticity (STA) for open quantum systems.
We reduce the adiabatic evolution time of a single lossy mode from 800 ns to 100 ns by applying a counterdiabatic driving pulse.
Our results pave the way for accelerating dynamics of open quantum systems and have potential applications in designing fast open-system protocols.
arXiv Detail & Related papers (2021-07-18T11:29:14Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Capturing Non-Markovian Dynamics on Near-Term Quantum Computers [0.0]
quantum algorithms for the treatment of open quantum systems (OQSs) have remained under-explored.
We present and validate a new quantum algorithm to treat non-Markovian dynamics in OQSs built on the Ensemble of Lindblad's Trajectories approach.
arXiv Detail & Related papers (2020-04-30T18:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.