Neural Conditional Probability for Inference
- URL: http://arxiv.org/abs/2407.01171v1
- Date: Mon, 1 Jul 2024 10:44:29 GMT
- Title: Neural Conditional Probability for Inference
- Authors: Vladimir R. Kostic, Karim Lounici, Gregoire Pacreau, Pietro Novelli, Giacomo Turri, Massimiliano Pontil,
- Abstract summary: We introduce NCP (Neural Conditional Probability), a novel operator-theoretic approach for learning conditional distributions.
By tapping into the powerful approximation capabilities of neural networks, our method efficiently handles a wide variety of complex probability distributions.
Our experiments show that our approach matches or beats leading methods using a simple Multi-Layer Perceptron (MLP) with two hidden layers and GELU activations.
- Score: 22.951644463554352
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce NCP (Neural Conditional Probability), a novel operator-theoretic approach for learning conditional distributions with a particular focus on inference tasks. NCP can be used to build conditional confidence regions and extract important statistics like conditional quantiles, mean, and covariance. It offers streamlined learning through a single unconditional training phase, facilitating efficient inference without the need for retraining even when conditioning changes. By tapping into the powerful approximation capabilities of neural networks, our method efficiently handles a wide variety of complex probability distributions, effectively dealing with nonlinear relationships between input and output variables. Theoretical guarantees ensure both optimization consistency and statistical accuracy of the NCP method. Our experiments show that our approach matches or beats leading methods using a simple Multi-Layer Perceptron (MLP) with two hidden layers and GELU activations. This demonstrates that a minimalistic architecture with a theoretically grounded loss function can achieve competitive results without sacrificing performance, even in the face of more complex architectures.
Related papers
- Conformal Risk Minimization with Variance Reduction [37.74931189657469]
Conformal prediction (CP) is a distribution-free framework for achieving probabilistic guarantees on black-box models.
Recent research efforts have focused on optimizing CP efficiency during training.
We formalize this concept as the problem of conformal risk minimization.
arXiv Detail & Related papers (2024-11-03T21:48:15Z) - Statistical Inference for Temporal Difference Learning with Linear Function Approximation [62.69448336714418]
Temporal Difference (TD) learning, arguably the most widely used for policy evaluation, serves as a natural framework for this purpose.
In this paper, we study the consistency properties of TD learning with Polyak-Ruppert averaging and linear function approximation, and obtain three significant improvements over existing results.
arXiv Detail & Related papers (2024-10-21T15:34:44Z) - Gradient-free variational learning with conditional mixture networks [39.827869318925494]
Conditional mixture networks (CMNs) are suitable for fast, gradient-free inference and can solve complex classification tasks.
We validate this approach by training two-layer CMNs on standard benchmarks from the UCI repository.
Our method, CAVI-CMN, achieves competitive and often superior predictive accuracy compared to maximum likelihood estimation (MLE) with backpropagation.
arXiv Detail & Related papers (2024-08-29T10:43:55Z) - Generative Conditional Distributions by Neural (Entropic) Optimal Transport [12.152228552335798]
We introduce a novel neural entropic optimal transport method designed to learn generative models of conditional distributions.
Our method relies on the minimax training of two neural networks.
Our experiments on real-world datasets show the effectiveness of our algorithm compared to state-of-the-art conditional distribution learning techniques.
arXiv Detail & Related papers (2024-06-04T13:45:35Z) - High Confidence Level Inference is Almost Free using Parallel Stochastic
Optimization [16.38026811561888]
This paper introduces a novel inference method focused on constructing confidence intervals with efficient computation and fast convergence to the nominal level.
Our method requires minimal additional computation and memory beyond the standard updating of estimates, making the inference process almost cost-free.
arXiv Detail & Related papers (2024-01-17T17:11:45Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Semantic Probabilistic Layers for Neuro-Symbolic Learning [83.25785999205932]
We design a predictive layer for structured-output prediction (SOP)
It can be plugged into any neural network guaranteeing its predictions are consistent with a set of predefined symbolic constraints.
Our Semantic Probabilistic Layer (SPL) can model intricate correlations, and hard constraints, over a structured output space.
arXiv Detail & Related papers (2022-06-01T12:02:38Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Local AdaGrad-Type Algorithm for Stochastic Convex-Concave Minimax
Problems [80.46370778277186]
Large scale convex-concave minimax problems arise in numerous applications, including game theory, robust training, and training of generative adversarial networks.
We develop a communication-efficient distributed extragrad algorithm, LocalAdaSient, with an adaptive learning rate suitable for solving convex-concave minimax problem in the.
Server model.
We demonstrate its efficacy through several experiments in both the homogeneous and heterogeneous settings.
arXiv Detail & Related papers (2021-06-18T09:42:05Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.