論文の概要: Semantic Room Wireframe Detection from a Single View
- arxiv url: http://arxiv.org/abs/2206.00491v1
- Date: Wed, 1 Jun 2022 13:44:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 12:15:31.153179
- Title: Semantic Room Wireframe Detection from a Single View
- Title(参考訳): 単一視点からのセマンティックルームワイヤフレーム検出
- Authors: David Gillsj\"o, Gabrielle Flood, Kalle {\AA}str\"om
- Abstract要約: 本研究では,セマンティック・ルーム・ワイヤーフレーム検出タスクを提案し,単一の視点からセマンティック・ワイヤーフレームを推定する。
提案アルゴリズムをトレーニングし、テストするために、シミュレーションされたStructured3Dデータセットから新しいアノテーションセットを作成します。
- 参考スコア(独自算出の注目度): 2.76240219662896
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstruction of indoor surfaces with limited texture information or with
repeated textures, a situation common in walls and ceilings, may be difficult
with a monocular Structure from Motion system. We propose a Semantic Room
Wireframe Detection task to predict a Semantic Wireframe from a single
perspective image. Such predictions may be used with shape priors to estimate
the Room Layout and aid reconstruction. To train and test the proposed
algorithm we create a new set of annotations from the simulated Structured3D
dataset. We show qualitatively that the SRW-Net handles complex room geometries
better than previous Room Layout Estimation algorithms while quantitatively
out-performing the baseline in non-semantic Wireframe Detection.
- Abstract(参考訳): テクスチャ情報やテクスチャの繰り返しによる室内表面の復元は, 壁や天井に共通する状況であり, 運動系からの単眼構造では困難である。
一つの視点画像から意味的ワイヤフレームを予測するための意味的ルームワイヤフレーム検出タスクを提案する。
このような予測は、部屋のレイアウトを推定し、復元を助けるために、事前の形状で用いることができる。
提案アルゴリズムをトレーニングし、テストするために、シミュレーションされたstructured3dデータセットから新しいアノテーションセットを作成します。
SRW-Netは、従来のRoom Layout Estimationアルゴリズムよりも複雑な部屋のジオメトリを扱い、非意味的ワイヤフレーム検出においてベースラインを定量的に上回ることを示す。
関連論文リスト
- Self-training Room Layout Estimation via Geometry-aware Ray-casting [27.906107629563852]
本研究では,未表示のシーンにおける室内レイアウト推定モデルのための幾何学的自己学習フレームワークを提案する。
提案手法では,異なる視点からの複数の推定値の集計にレイキャストの定式化を用いる。
論文 参考訳(メタデータ) (2024-07-21T03:25:55Z) - DoubleTake: Geometry Guided Depth Estimation [17.464549832122714]
RGB画像の列から深度を推定することは、基本的なコンピュータビジョンタスクである。
本稿では,現在のカメラ位置から深度マップとして描画された,ボリューム特徴と先行幾何学のヒントを組み合わせた再構成手法を提案する。
本手法は, オフライン・インクリメンタルな評価シナリオにおいて, 対話的な速度, 最先端の深度推定, および3次元シーンで動作可能であることを示す。
論文 参考訳(メタデータ) (2024-06-26T14:29:05Z) - Indoor Scene Reconstruction with Fine-Grained Details Using Hybrid Representation and Normal Prior Enhancement [50.56517624931987]
多視点RGB画像からの室内シーンの再構成は、平坦領域とテクスチャレス領域の共存により困難である。
近年の手法では、予測された表面正規化によって支援されたニューラルラジアンス場を利用してシーン形状を復元している。
本研究は, 上記の制限に対処して, 高忠実度表面を細かな詳細で再構築することを目的とする。
論文 参考訳(メタデータ) (2023-09-14T12:05:29Z) - NEAT: Distilling 3D Wireframes from Neural Attraction Fields [52.90572335390092]
本稿では,3次元再構成セグメントと焦点接合を用いたラインフレーム接合の問題について検討する。
ProjectNEATは、クロスアートマッチングをゼロから行わずに、ジョイントニューラルフィールドとビューを楽しみます。
論文 参考訳(メタデータ) (2023-07-14T07:25:47Z) - Detector-Free Structure from Motion [63.5577809314603]
そこで我々は,非秩序な画像から正確なカメラポーズと点雲を復元する新しい構造抽出フレームワークを提案する。
我々のフレームワークはまず、量子化された検出器レスマッチングから粗いSfMモデルを再構成する。
提案手法が既存の検出器ベースのSfMシステムより優れていることを示す実験を行った。
論文 参考訳(メタデータ) (2023-06-27T17:59:39Z) - Making Reconstruction-based Method Great Again for Video Anomaly
Detection [64.19326819088563]
ビデオの異常検出は重要な問題だが、難しい問題だ。
既存の再構成に基づく手法は、昔ながらの畳み込みオートエンコーダに依存している。
連続フレーム再構築のための新しいオートエンコーダモデルを提案する。
論文 参考訳(メタデータ) (2023-01-28T01:57:57Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
本稿では,多視点画像から3次元屋内シーンを再構築する課題について述べる。
平面的制約は、最近の暗黙の神経表現に基づく再構成手法に便利に組み込むことができる。
提案手法は, 従来の手法よりも3次元再構成品質に優れていた。
論文 参考訳(メタデータ) (2022-05-05T17:59:55Z) - Implicit Mesh Reconstruction from Unannotated Image Collections [48.85604987196472]
本稿では,1枚のRGB画像から3次元形状,テクスチャ,カメラのポーズを推定する手法を提案する。
この形状を画像条件付暗黙関数として表現し、球面を予測メッシュのそれに変換するとともに、対応するテクスチャを予測する。
論文 参考訳(メタデータ) (2020-07-16T17:55:20Z) - Plane Pair Matching for Efficient 3D View Registration [7.920114031312631]
室内シーンにおける重なり合う3次元ビュー間の動き行列を推定する新しい手法を提案する。
マンハッタンの世界仮定を用いて、平面の四角形の下での軽量な幾何学的制約を問題に導入する。
我々は,玩具の例にアプローチを検証し,最近の最先端手法と比較し,公開RGB-Dデータセットの定量的実験を行った。
論文 参考訳(メタデータ) (2020-01-20T11:15:26Z) - Indoor Layout Estimation by 2D LiDAR and Camera Fusion [3.2387553628943535]
本稿では,画像列とLiDARデータセットの融合による屋内レイアウト推定と再構築のためのアルゴリズムを提案する。
提案システムでは,2次元LiDAR情報とインテンシティ画像の両方を移動プラットフォームで収集する。
論文 参考訳(メタデータ) (2020-01-15T16:43:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。