論文の概要: Proximally Sensitive Error for Anomaly Detection and Feature Learning
- arxiv url: http://arxiv.org/abs/2206.00506v1
- Date: Wed, 1 Jun 2022 14:06:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 17:41:09.334354
- Title: Proximally Sensitive Error for Anomaly Detection and Feature Learning
- Title(参考訳): 異常検出と特徴学習のための近位感度誤差
- Authors: Amogh Gudi, Fritjof B\"uttner, Jan van Gemert
- Abstract要約: 平均二乗誤差(Mean squared error、MSE)は、エンティティ間の差を測定するために最も広く使用される指標の1つである。
MSEは(ピクセル)差の空間配置を考慮していないため、局所的に敏感ではない。
本稿ではPSE(Proximally Sensitive Error)を導入し,画像間の意味的差異を「ハイライト」できることを示す。
- 参考スコア(独自算出の注目度): 12.405641331483256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mean squared error (MSE) is one of the most widely used metrics to expression
differences between multi-dimensional entities, including images. However, MSE
is not locally sensitive as it does not take into account the spatial
arrangement of the (pixel) differences, which matters for structured data types
like images. Such spatial arrangements carry information about the source of
the differences; therefore, an error function that also incorporates the
location of errors can lead to a more meaningful distance measure. We introduce
Proximally Sensitive Error (PSE), through which we suggest that a regional
emphasis in the error measure can 'highlight' semantic differences between
images over syntactic/random deviations. We demonstrate that this emphasis can
be leveraged upon for the task of anomaly/occlusion detection. We further
explore its utility as a loss function to help a model focus on learning
representations of semantic objects instead of minimizing syntactic
reconstruction noise.
- Abstract(参考訳): 平均二乗誤差(mse)は、画像を含む多次元実体間の差異を表現するために最も広く使われている指標の1つである。
しかし、mseは画像のような構造化データ型において重要な(ピクセル)差分の空間配置を考慮していないため、局所的な感度はない。
このような空間配置は相違点の情報を運ぶため、誤差の位置を組み込んだ誤り関数はより意味のある距離測定に繋がる可能性がある。
本稿では, PSE(Proximally Sensitive Error)を導入し, 誤差尺度の局所的な強調は, 構文的・ランダムな偏差よりも画像間の意味的差異を「強調」できることを示した。
この強調を異常/閉塞検出の課題に活用できることを実証する。
さらに,構文再構成ノイズを最小限に抑える代わりに,モデルが意味オブジェクトの表現を学習するのを支援するための損失関数としての有用性についても検討する。
関連論文リスト
- Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - LADMIM: Logical Anomaly Detection with Masked Image Modeling in Discrete Latent Space [0.0]
マスク付き画像モデリングは、画像中のマスキング領域の特徴表現を予測する自己教師付き学習技術である。
本稿では,MIMの特性を利用して論理異常を効果的に検出する手法を提案する。
提案手法をMVTecLOCOデータセット上で評価し,平均AUC 0.867。
論文 参考訳(メタデータ) (2024-10-14T07:50:56Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Learning a Cross-modality Anomaly Detector for Remote Sensing Imagery [21.444315419064882]
リモートセンシング異常検知器は、地球観測の潜在的な標的として、背景から逸脱する物体を見つけることができる。
現在の異常検出器は特定の背景分布を学習することを目的としており、訓練されたモデルは見えない画像に転送することはできない。
本研究では,異なる背景分布から一貫した偏差距離への学習目標変換を利用する。
論文 参考訳(メタデータ) (2023-10-11T14:07:05Z) - Improving Vision Anomaly Detection with the Guidance of Language
Modality [64.53005837237754]
本稿では,マルチモーダルの観点から視覚モダリティの課題に取り組む。
本稿では,冗長な情報問題とスパース空間問題に対処するために,クロスモーダルガイダンス(CMG)を提案する。
視覚異常検出のためのよりコンパクトな潜在空間を学習するために、CMLEは言語モダリティから相関構造行列を学習する。
論文 参考訳(メタデータ) (2023-10-04T13:44:56Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
ニューラルネットワーク層のBi-Lipschitz正規化は、各レイヤの特徴空間におけるデータインスタンス間の相対距離を保存する。
注意セットエンコーダを用いて,タスク固有の共分散行列を効率的に構築するために,対角的,対角的,低ランクな要素のメタ学習を提案する。
また,最終的な予測分布を達成するために,スケールしたエネルギーを利用する推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T22:04:19Z) - MLF-SC: Incorporating multi-layer features to sparse coding for anomaly
detection [2.2276675054266395]
画像の異常は、カーペットの上の小さな穴から大きな汚れまで、様々なスケールで発生する。
広く使われている異常検出方法の1つであるスパースコーディング(sparse coding)は、画像のスパース表現に使用されるパッチサイズから外れた異常を扱う際に問題となる。
本稿では,マルチスケール機能をスパース符号化に取り入れ,異常検出の性能を向上させることを提案する。
論文 参考訳(メタデータ) (2021-04-09T10:20:34Z) - Pixel-wise Anomaly Detection in Complex Driving Scenes [30.884375526254836]
本稿では,不確実性マップを用いて異常検出を改善する画素方向異常検出フレームワークを提案する。
私たちのアプローチは、すでにトレーニング済みのセグメンテーションネットワークの一般的なフレームワークとして機能します。
さまざまな異常データセットを対象としたトップ2パフォーマンスは、異なる異常インスタンスを扱うアプローチの堅牢性を示している。
論文 参考訳(メタデータ) (2021-03-09T14:26:20Z) - Projected Distribution Loss for Image Enhancement [15.297569497776374]
CNNアクティベーション間の1D-ワッサースタイン距離の集約は,既存の手法よりも信頼性が高いことを示す。
デノイジング、スーパーレゾリューション、復号化、デブレーション、JPEGアーティファクト除去などのイメージングアプリケーションでは、提案された学習損失は、参照ベースの知覚的損失に関する現在の最先端のものを上回る。
論文 参考訳(メタデータ) (2020-12-16T22:13:03Z) - Detecting Word Sense Disambiguation Biases in Machine Translation for
Model-Agnostic Adversarial Attacks [84.61578555312288]
本稿では,統計的データ特性に基づく曖昧な誤りの予測手法を提案する。
我々は,曖昧な誤りを生じさせるため,文の摂動を最小限に抑える,単純な敵攻撃戦略を開発する。
以上の結果から,曖昧さの堅牢性はドメイン間で大きく異なり,同一データ上でトレーニングされた異なるモデルが異なる攻撃に対して脆弱であることが示唆された。
論文 参考訳(メタデータ) (2020-11-03T17:01:44Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
2つの空中画像が与えられた場合、セマンティックチェンジ検出は、土地被覆のバリエーションを特定し、それらの変化タイプをピクセルワイド境界で識別することを目的としている。
この問題は、正確な都市計画や天然資源管理など、多くの地球ビジョンに関連するタスクにおいて不可欠である。
本研究では, 広く異なる構造を持つモジュールから得られた特徴対を用いて意味変化を同定し, 同定するための非対称システマネットワーク(ASN)を提案する。
論文 参考訳(メタデータ) (2020-10-12T13:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。