Privacy-Preserving Epidemiological Modeling on Mobile Graphs
- URL: http://arxiv.org/abs/2206.00539v2
- Date: Mon, 24 Feb 2025 20:25:04 GMT
- Title: Privacy-Preserving Epidemiological Modeling on Mobile Graphs
- Authors: Daniel Günther, Marco Holz, Benjamin Judkewitz, Helen Möllering, Benny Pinkas, Thomas Schneider, Ajith Suresh,
- Abstract summary: RIPPLE is a privacy-preserving epidemiological modeling framework.<n>Pir-SUM is a novel extension to private information retrieval for secure download of element sums from a database.
- Score: 17.917214072164864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The latest pandemic COVID-19 brought governments worldwide to use various containment measures to control its spread, such as contact tracing, social distance regulations, and curfews. Epidemiological simulations are commonly used to assess the impact of those policies before they are implemented. Unfortunately, the scarcity of relevant empirical data, specifically detailed social contact graphs, hampered their predictive accuracy. As this data is inherently privacy-critical, a method is urgently needed to perform powerful epidemiological simulations on real-world contact graphs without disclosing any sensitive~information. In this work, we present RIPPLE, a privacy-preserving epidemiological modeling framework enabling standard models for infectious disease on a population's real contact graph while keeping all contact information locally on the participants' devices. As a building block of independent interest, we present PIR-SUM, a novel extension to private information retrieval for secure download of element sums from a database. Our protocols are supported by a proof-of-concept implementation, demonstrating a 2-week simulation over half a million participants completed in 7 minutes, with each participant communicating less than 50 KB.
Related papers
- Adversarial Learning-based Stance Classifier for COVID-19-related Health
Policies [14.558584240713154]
We propose an adversarial learning-based stance classifier to automatically identify the public's attitudes toward COVID-19-related health policies.
To enhance the model's deeper understanding, we incorporate policy descriptions as external knowledge into the model.
We evaluate the performance of a broad range of baselines on the stance detection task for COVID-19-related health policies.
arXiv Detail & Related papers (2022-09-10T10:27:21Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Models for digitally contact-traced epidemics [0.0]
Digital contact tracing has been proposed as an automated solution to scale up traditional contact tracing.
We propose a compartmental SEIR model to derive closed-form conditions regarding the control of the COVID-19 epidemic.
arXiv Detail & Related papers (2022-03-01T16:50:00Z) - Practical Challenges in Differentially-Private Federated Survival
Analysis of Medical Data [57.19441629270029]
In this paper, we take advantage of the inherent properties of neural networks to federate the process of training of survival analysis models.
In the realistic setting of small medical datasets and only a few data centers, this noise makes it harder for the models to converge.
We propose DPFed-post which adds a post-processing stage to the private federated learning scheme.
arXiv Detail & Related papers (2022-02-08T10:03:24Z) - #StayHome or #Marathon? Social Media Enhanced Pandemic Surveillance on
Spatial-temporal Dynamic Graphs [23.67939019353524]
COVID-19 has caused lasting damage to almost every domain in public health, society, and economy.
Existing studies rely on the aggregation of traditional statistical models and epidemic spread theory.
We propose a novel framework, Social Media enhAnced pandemic knowledge based on the extracted events and relationships.
arXiv Detail & Related papers (2021-08-08T15:46:05Z) - Dynamically Adjusting Case Reporting Policy to Maximize Privacy and
Utility in the Face of a Pandemic [16.486088007516102]
Current de-identification approaches are inefficient, relying on retrospective disclosure risk assessments.
We introduce a framework to dynamically adapt de-identification for near-real time sharing of person-level surveillance data.
arXiv Detail & Related papers (2021-06-21T19:49:17Z) - STOPPAGE: Spatio-temporal Data Driven Cloud-Fog-Edge Computing Framework
for Pandemic Monitoring and Management [28.205715426050105]
It is absolutely necessary to develop an analytics framework to deliver insights in improving administrative policy and enhance the preparedness to combat the pandemic.
This paper proposes a STOP-temporal knowledge mining framework, named STOP to model the impact of human mobility and contextual information over large geographic area in different temporal scales.
The framework has two modules: (i) S-temporal data and computing infrastructure using fog/edge based architecture; and (ii) S-temporal data analytics module to efficiently extract knowledge from heterogeneous data sources.
arXiv Detail & Related papers (2021-04-04T12:29:31Z) - Health Status Prediction with Local-Global Heterogeneous Behavior Graph [69.99431339130105]
Estimation of health status can be achieved with various kinds of data streams continuously collected from wearable sensors.
We propose to model the behavior-related multi-source data streams with a local-global graph.
We take experiments on StudentLife dataset, and extensive results demonstrate the effectiveness of our proposed model.
arXiv Detail & Related papers (2021-03-23T11:10:04Z) - Reconciling Security and Utility in Next-Generation Epidemic Risk Mitigation Systems [49.05741109401773]
We present Silmarillion, a system that reconciles user's privacy with rich data collection for higher utility.
In Silmarillion, user devices record Bluetooth encounters with beacons installed in strategic locations.
We describe the design of Silmarillion and its communication protocols that ensure user privacy and data security.
arXiv Detail & Related papers (2020-11-16T16:19:37Z) - Predicting Infectiousness for Proactive Contact Tracing [75.62186539860787]
Large-scale digital contact tracing is a potential solution to resume economic and social activity while minimizing spread of the virus.
Various DCT methods have been proposed, each making trade-offs between privacy, mobility restrictions, and public health.
This paper develops and test methods that can be deployed to a smartphone to proactively predict an individual's infectiousness.
arXiv Detail & Related papers (2020-10-23T17:06:07Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
We develop Bayesian inference methods to estimate the risk that an individual is infected.
We propose to use probabilistic risk estimation in order to optimize testing and quarantining strategies for the control of an epidemic.
Our approaches translate into fully distributed algorithms that only require communication between individuals who have recently been in contact.
arXiv Detail & Related papers (2020-09-20T12:24:45Z) - Data-driven Simulation and Optimization for Covid-19 Exit Strategies [16.31545249131776]
The rapid spread of the Coronavirus SARS-2 is a major challenge that led almost all governments worldwide to take drastic measures to respond to the tragedy.
We have built a pandemic simulation and forecasting toolkit that combines a deep learning estimation of the epidemiological parameters of the disease.
arXiv Detail & Related papers (2020-06-12T11:18:25Z) - COVI White Paper [67.04578448931741]
Contact tracing is an essential tool to change the course of the Covid-19 pandemic.
We present an overview of the rationale, design, ethical considerations and privacy strategy of COVI,' a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada.
arXiv Detail & Related papers (2020-05-18T07:40:49Z) - Digital Ariadne: Citizen Empowerment for Epidemic Control [55.41644538483948]
The COVID-19 crisis represents the most dangerous threat to public health since the H1N1 pandemic of 1918.
Technology-assisted location and contact tracing, if broadly adopted, may help limit the spread of infectious diseases.
We present a tool, called 'diAry' or 'digital Ariadne', based on voluntary location and Bluetooth tracking on personal devices.
arXiv Detail & Related papers (2020-04-16T15:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.