論文の概要: Graph Machine Learning for Design of High-Octane Fuels
- arxiv url: http://arxiv.org/abs/2206.00619v1
- Date: Wed, 1 Jun 2022 16:43:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-02 13:53:27.708023
- Title: Graph Machine Learning for Design of High-Octane Fuels
- Title(参考訳): 高オクタン燃料設計のためのグラフ機械学習
- Authors: Jan G. Rittig, Martin Ritzert, Artur M. Schweidtmann, Stefanie
Winkler, Jana M. Weber, Philipp Morsch, K. Alexander Heufer, Martin Grohe,
Alexander Mitsos, Manuel Dahmen
- Abstract要約: コンピュータ支援分子設計(CAMD)は、所望の自己着火特性を持つ分子を識別することができる。
本稿では,生成グラフMLモデルとグラフニューラルネットワークと最適化を統合したグラフ-ML CAMDフレームワークを提案する。
我々は、さらなる自動点火訓練データの必要性を実験的に調査し、説明するために使用した。
- 参考スコア(独自算出の注目度): 47.43758223690195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fuels with high-knock resistance enable modern spark-ignition engines to
achieve high efficiency and thus low CO2 emissions. Identification of molecules
with desired autoignition properties indicated by a high research octane number
and a high octane sensitivity is therefore of great practical relevance and can
be supported by computer-aided molecular design (CAMD). Recent developments in
the field of graph machine learning (graph-ML) provide novel, promising tools
for CAMD. We propose a modular graph-ML CAMD framework that integrates
generative graph-ML models with graph neural networks and optimization,
enabling the design of molecules with desired ignition properties in a
continuous molecular space. In particular, we explore the potential of Bayesian
optimization and genetic algorithms in combination with generative graph-ML
models. The graph-ML CAMD framework successfully identifies well-established
high-octane components. It also suggests new candidates, one of which we
experimentally investigate and use to illustrate the need for further
auto-ignition training data.
- Abstract(参考訳): 高い耐ノック性を持つ燃料により、現代の火花点火エンジンは高効率でCO2排出量を低減できる。
高い研究オクタン数と高いオクタン感度で示される所望の自己着火特性を持つ分子の同定は、非常に実用的であり、コンピュータ支援分子設計(CAMD)によって支持される。
グラフ機械学習(graph-ML)の分野における最近の進歩は、CAMDに新しい、有望なツールを提供する。
本稿では,グラフニューラルネットワークと最適化により生成グラフMLモデルを統合し,連続的な分子空間において所望の着火特性を持つ分子の設計を可能にするモジュール型グラフMLCAMDフレームワークを提案する。
特に、生成グラフ-MLモデルと組み合わせてベイズ最適化と遺伝的アルゴリズムの可能性を検討する。
Graph-ML CAMDフレームワークは、確立されたハイオクタンコンポーネントをうまく識別する。
また,新たな候補の提案を行い,その1つを実験的に検討し,さらなる自動点火訓練データの必要性を明らかにした。
関連論文リスト
- Improving Molecular Graph Generation with Flow Matching and Optimal Transport [8.2504828891983]
GGFlowは分子グラフの最適輸送を取り入れた離散フローマッチング生成モデルである。
エッジ拡張グラフ変換器を内蔵し、化学結合間の直接通信を可能にする。
GGFlowは無条件および条件付き分子生成タスクにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2024-11-08T16:27:27Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - RGCVAE: Relational Graph Conditioned Variational Autoencoder for
Molecule Design [70.59828655929194]
ディープグラフ変分自動エンコーダは、この問題に対処可能な、最も強力な機械学習ツールの1つである。
i)新しい強力なグラフ同型ネットワークを利用した符号化ネットワーク,(ii)新しい確率的復号化コンポーネントを提案する。
論文 参考訳(メタデータ) (2023-05-19T14:23:48Z) - Extreme Acceleration of Graph Neural Network-based Prediction Models for
Quantum Chemistry [7.592530794455257]
本稿では,分子特性予測のためのグラフニューラルネットワークのトレーニングをスケールアップするための,ハードウェアとソフトウェアの共同設計手法を提案する。
本稿では,分子グラフのバッチを固定サイズパックに結合して冗長計算やメモリを不要にするアルゴリズムを提案する。
このような共同設計手法により、分子特性予測モデルのトレーニング時間を数日から2時間未満に短縮できることを示す。
論文 参考訳(メタデータ) (2022-11-25T01:30:18Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
分子特性を予測するための階層型情報グラフニューラルネットワークフレームワーク(HiGNN)を提案する。
実験により、HiGNNは、多くの挑戦的な薬物発見関連ベンチマークデータセットに対して最先端の予測性能を達成することが示された。
論文 参考訳(メタデータ) (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
グラフニューラルネットワーク(GNN)は、薬物の設計と発見の問題を解決するために広く使われている。
分子グラフ生成における表現第一のアプローチを提案する。
我々のアーキテクチャは、医薬品のデータセットの有意義な表現を学習し、目標指向の薬物合成のためのプラットフォームを提供する。
論文 参考訳(メタデータ) (2021-10-12T18:00:23Z) - Conditional Constrained Graph Variational Autoencoders for Molecule
Design [70.59828655929194]
本稿では、このキーイデアを最先端のモデルで実装した、条件制約付きグラフ変分オートエンコーダ(CCGVAE)を提案する。
分子生成のために広く採用されている2つのデータセットについて、いくつかの評価指標について改善した結果を示す。
論文 参考訳(メタデータ) (2020-09-01T21:58:07Z) - Visualizing Deep Graph Generative Models for Drug Discovery [16.78530326723672]
深部グラフ生成モデルの符号化・復号過程において生成する分子を可視化する可視化フレームワークを提案する。
私たちの研究は、ブラックボックスAIによる薬物発見モデルに視覚的解釈能力を持たせることを目的としています。
論文 参考訳(メタデータ) (2020-07-20T18:49:10Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。