論文の概要: Extreme Acceleration of Graph Neural Network-based Prediction Models for
Quantum Chemistry
- arxiv url: http://arxiv.org/abs/2211.13853v1
- Date: Fri, 25 Nov 2022 01:30:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 19:00:46.511367
- Title: Extreme Acceleration of Graph Neural Network-based Prediction Models for
Quantum Chemistry
- Title(参考訳): 量子化学のためのグラフニューラルネットワークに基づく予測モデルの極端な加速
- Authors: Hatem Helal, Jesun Firoz, Jenna Bilbrey, Mario Michael Krell, Tom
Murray, Ang Li, Sotiris Xantheas, Sutanay Choudhury
- Abstract要約: 本稿では,分子特性予測のためのグラフニューラルネットワークのトレーニングをスケールアップするための,ハードウェアとソフトウェアの共同設計手法を提案する。
本稿では,分子グラフのバッチを固定サイズパックに結合して冗長計算やメモリを不要にするアルゴリズムを提案する。
このような共同設計手法により、分子特性予測モデルのトレーニング時間を数日から2時間未満に短縮できることを示す。
- 参考スコア(独自算出の注目度): 7.592530794455257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular property calculations are the bedrock of chemical physics.
High-fidelity \textit{ab initio} modeling techniques for computing the
molecular properties can be prohibitively expensive, and motivate the
development of machine-learning models that make the same predictions more
efficiently. Training graph neural networks over large molecular databases
introduces unique computational challenges such as the need to process millions
of small graphs with variable size and support communication patterns that are
distinct from learning over large graphs such as social networks. This paper
demonstrates a novel hardware-software co-design approach to scale up the
training of graph neural networks for molecular property prediction. We
introduce an algorithm to coalesce the batches of molecular graphs into fixed
size packs to eliminate redundant computation and memory associated with
alternative padding techniques and improve throughput via minimizing
communication. We demonstrate the effectiveness of our co-design approach by
providing an implementation of a well-established molecular property prediction
model on the Graphcore Intelligence Processing Units (IPU). We evaluate the
training performance on multiple molecular graph databases with varying degrees
of graph counts, sizes and sparsity. We demonstrate that such a co-design
approach can reduce the training time of such molecular property prediction
models from days to less than two hours, opening new possibilities for
AI-driven scientific discovery.
- Abstract(参考訳): 分子特性計算は化学物理学の基盤である。
分子特性を計算するための高忠実度 \textit{ab initio} モデリング技術は、禁止的に高価であり、同じ予測をより効率的にする機械学習モデルの開発を動機付ける。
大規模分子データベース上のグラフニューラルネットワークのトレーニングには、可変サイズの数百万の小さなグラフを処理する必要性や、ソーシャルネットワークのような大規模グラフを学習することとは異なるコミュニケーションパターンのサポートなど、ユニークな計算上の課題が伴う。
本稿では,分子特性予測のためのグラフニューラルネットワークのトレーニングをスケールアップするための,ハードウェア・ソフトウェア共同設計手法を提案する。
本稿では,分子グラフのバッチを固定サイズパックに融合し,代替パディング技術に伴う冗長な計算とメモリを除去し,通信の最小化によるスループットを向上させるアルゴリズムを提案する。
グラフコアインテリジェンス処理ユニット(IPU)上に確立された分子特性予測モデルの実装を提供することにより,共同設計手法の有効性を示す。
本研究では, グラフ数, サイズ, 間隔の異なる複数の分子グラフデータベース上でのトレーニング性能を評価する。
このような共同設計アプローチは、そのような分子特性予測モデルのトレーニング時間を数日から2時間未満に短縮し、AIによる科学的発見の新たな可能性を開くことを実証する。
関連論文リスト
- CTAGE: Curvature-Based Topology-Aware Graph Embedding for Learning
Molecular Representations [11.12640831521393]
分子グラフデータから構造的洞察を抽出するために,$k$hopの離散リッチ曲率を用いたCTAGEの埋め込み手法を提案する。
その結果,ノード曲率の導入は,現在のグラフニューラルネットワークフレームワークの性能を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-07-25T06:13:01Z) - RGCVAE: Relational Graph Conditioned Variational Autoencoder for
Molecule Design [70.59828655929194]
ディープグラフ変分自動エンコーダは、この問題に対処可能な、最も強力な機械学習ツールの1つである。
i)新しい強力なグラフ同型ネットワークを利用した符号化ネットワーク,(ii)新しい確率的復号化コンポーネントを提案する。
論文 参考訳(メタデータ) (2023-05-19T14:23:48Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
本稿では、幾何学的特徴をエレガントに抽出し、分子構造を効率的にモデル化する同変幾何拡張グラフニューラルネットワークViSNetを提案する。
提案するViSNetは,MD17,MD17,MD22を含む複数のMDベンチマークにおける最先端の手法よりも優れ,QM9およびMolecule3Dデータセット上での優れた化学的特性予測を実現する。
論文 参考訳(メタデータ) (2022-10-29T07:12:46Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
分子特性を予測するための階層型情報グラフニューラルネットワークフレームワーク(HiGNN)を提案する。
実験により、HiGNNは、多くの挑戦的な薬物発見関連ベンチマークデータセットに対して最先端の予測性能を達成することが示された。
論文 参考訳(メタデータ) (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - KPGT: Knowledge-Guided Pre-training of Graph Transformer for Molecular
Property Prediction [13.55018269009361]
我々は、分子グラフ表現学習のための新しい自己教師付き学習フレームワーク、KPGT(Knowledge-guided Pre-training of Graph Transformer)を紹介する。
KPGTは、いくつかの分子特性予測タスクにおける最先端の手法よりも優れた性能を提供することができる。
論文 参考訳(メタデータ) (2022-06-02T08:22:14Z) - Attention-wise masked graph contrastive learning for predicting
molecular property [15.387677968070912]
大規模無ラベル分子のための自己教師付き表現学習フレームワークを提案する。
我々は,注目グラフマスクと呼ばれる新しい分子グラフ拡張戦略を開発した。
我々のモデルは重要な分子構造と高次意味情報を捉えることができる。
論文 参考訳(メタデータ) (2022-05-02T00:28:02Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
計算モデルや分子表現にまたがる包括的な機械学習ツール群であるMoleculeKitを開発した。
これらの表現に基づいて構築されたMoeculeKitには、ディープラーニングと、グラフとシーケンスデータのための従来の機械学習方法の両方が含まれている。
オンラインおよびオフラインの抗生物質発見と分子特性予測のタスクの結果から、MoneculeKitは以前の方法よりも一貫した改善を実現していることがわかる。
論文 参考訳(メタデータ) (2020-12-02T02:09:31Z) - Physics-Constrained Predictive Molecular Latent Space Discovery with
Graph Scattering Variational Autoencoder [0.0]
我々は小データ構造における変分推論とグラフ理論に基づく分子生成モデルを開発する。
モデルの性能は、所望の目的特性を持つ分子を生成することによって評価される。
論文 参考訳(メタデータ) (2020-09-29T09:05:27Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。