論文の概要: Bayesian Inference for the Multinomial Probit Model under Gaussian Prior
Distribution
- arxiv url: http://arxiv.org/abs/2206.00720v1
- Date: Wed, 1 Jun 2022 19:10:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-04 05:24:52.006936
- Title: Bayesian Inference for the Multinomial Probit Model under Gaussian Prior
Distribution
- Title(参考訳): ガウス事前分布下における多項プロビットモデルのベイズ推定
- Authors: Augusto Fasano, Giovanni Rebaudo, Niccol\`o Anceschi
- Abstract要約: マルチノミカル・プロビット(mnp)モデルは分類データに対する基本的かつ広く適用された回帰モデルである。
Fasano and Durante (2022) は、統一スキュー正規分布のクラスが複数のmnpサンプリングモデルに共役であることを証明した。
結果は、ゼロ平均と独立ガウス事前の下での離散選択 mnp モデルという、一般的な特殊ケースに適応する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multinomial probit (mnp) models are fundamental and widely-applied regression
models for categorical data. Fasano and Durante (2022) proved that the class of
unified skew-normal distributions is conjugate to several mnp sampling models.
This allows to develop Monte Carlo samplers and accurate variational methods to
perform Bayesian inference. In this paper, we adapt the abovementioned results
for a popular special case: the discrete-choice mnp model under zero mean and
independent Gaussian priors. This allows to obtain simplified expressions for
the parameters of the posterior distribution and an alternative derivation for
the variational algorithm that gives a novel understanding of the fundamental
results in Fasano and Durante (2022) as well as computational advantages in our
special settings.
- Abstract(参考訳): マルチノミカル・プロビット(mnp)モデルは分類データの基本的な回帰モデルである。
Fasano and Durante (2022) は、統一スキュー正規分布のクラスが複数のmnpサンプリングモデルに共役であることを証明した。
これによりモンテカルロサンプルと正確な変分法を開発しベイズ推論を行うことができる。
本稿では,ゼロ平均と独立ガウス前駆の下での離散結合型mnpモデルについて,上記の結果を適用した。
これにより、後方分布のパラメータの簡易表現と変分アルゴリズムの代替導出を得ることができ、fasano and durante (2022) の基本結果の新たな理解と、我々の特別な設定における計算上の利点が得られる。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Fusion of Gaussian Processes Predictions with Monte Carlo Sampling [61.31380086717422]
科学と工学において、私たちはしばしば興味のある変数の正確な予測のために設計されたモデルで作業します。
これらのモデルが現実の近似であることを認識し、複数のモデルを同じデータに適用し、結果を統合することが望ましい。
論文 参考訳(メタデータ) (2024-03-03T04:21:21Z) - Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - Bayesian Neural Network Inference via Implicit Models and the Posterior
Predictive Distribution [0.8122270502556371]
本稿では,ベイズニューラルネットワークのような複雑なモデルにおいて,近似ベイズ推論を行うための新しい手法を提案する。
このアプローチはMarkov Chain Monte Carloよりも大規模データに対してスケーラブルである。
これは、サロゲートや物理モデルのような応用に有用であると考えています。
論文 参考訳(メタデータ) (2022-09-06T02:43:19Z) - B\'ezier Curve Gaussian Processes [8.11969931278838]
本稿では,確率的B'ezier曲線上に構築された新しい確率的シーケンスモデルを提案する。
混合密度ネットワークと組み合わせることで、平均場変動近似を必要とせずにベイズ条件推論を行うことができる。
このモデルは歩行者の軌跡予測に使われ、生成した予測はGP前でも機能する。
論文 参考訳(メタデータ) (2022-05-03T19:49:57Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Flexible mean field variational inference using mixtures of
non-overlapping exponential families [6.599344783327053]
標準平均場変動推論を用いることで、疎性誘導前のモデルに対して妥当な結果が得られないことを示す。
拡散指数族と 0 の点質量の任意の混合が指数族を形成することを示す。
論文 参考訳(メタデータ) (2020-10-14T01:46:56Z) - A Class of Conjugate Priors for Multinomial Probit Models which Includes
the Multivariate Normal One [0.3553493344868413]
統一スキュー正規分布(SUN)のクラス全体は、複数の多重項プロビットモデルに共役していることを示す。
後部推論と分類のための最先端の解法を改善する。
論文 参考訳(メタデータ) (2020-07-14T10:08:23Z) - Gaussian Process Regression with Local Explanation [28.90948136731314]
本稿では,各サンプルの予測に寄与する特徴を明らかにするため,局所的な説明を伴うGPRを提案する。
提案モデルでは,各サンプルの予測と説明を,容易に解釈可能な局所線形モデルを用いて行う。
新しい試験サンプルでは, 対象変数と重みベクトルの値と不確かさを予測できる。
論文 参考訳(メタデータ) (2020-07-03T13:22:24Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。