論文の概要: Gaussian Process Regression with Local Explanation
- arxiv url: http://arxiv.org/abs/2007.01669v3
- Date: Wed, 2 Dec 2020 10:13:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 05:01:17.529188
- Title: Gaussian Process Regression with Local Explanation
- Title(参考訳): 局所的説明を伴うガウス過程回帰
- Authors: Yuya Yoshikawa, Tomoharu Iwata
- Abstract要約: 本稿では,各サンプルの予測に寄与する特徴を明らかにするため,局所的な説明を伴うGPRを提案する。
提案モデルでは,各サンプルの予測と説明を,容易に解釈可能な局所線形モデルを用いて行う。
新しい試験サンプルでは, 対象変数と重みベクトルの値と不確かさを予測できる。
- 参考スコア(独自算出の注目度): 28.90948136731314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian process regression (GPR) is a fundamental model used in machine
learning. Owing to its accurate prediction with uncertainty and versatility in
handling various data structures via kernels, GPR has been successfully used in
various applications. However, in GPR, how the features of an input contribute
to its prediction cannot be interpreted. Herein, we propose GPR with local
explanation, which reveals the feature contributions to the prediction of each
sample, while maintaining the predictive performance of GPR. In the proposed
model, both the prediction and explanation for each sample are performed using
an easy-to-interpret locally linear model. The weight vector of the locally
linear model is assumed to be generated from multivariate Gaussian process
priors. The hyperparameters of the proposed models are estimated by maximizing
the marginal likelihood. For a new test sample, the proposed model can predict
the values of its target variable and weight vector, as well as their
uncertainties, in a closed form. Experimental results on various benchmark
datasets verify that the proposed model can achieve predictive performance
comparable to those of GPR and superior to that of existing interpretable
models, and can achieve higher interpretability than them, both quantitatively
and qualitatively.
- Abstract(参考訳): ガウス過程回帰(GPR)は機械学習で使用される基本モデルである。
カーネルを介して様々なデータ構造を扱う際の不確実性と汎用性を備えた正確な予測のため、GPRは様々なアプリケーションでうまく使われている。
しかし、GPRでは、入力の特徴がその予測にどのように貢献するかは解釈できない。
本稿では,GPRの予測性能を維持しつつ,各サンプルの予測に寄与する特徴を明らかにする局所的な説明を伴うGPRを提案する。
提案モデルでは,各サンプルの予測と説明を,容易に解釈可能な局所線形モデルを用いて行う。
局所線型モデルの重みベクトルは多変量ガウス過程の先行から生成されると仮定される。
提案したモデルのハイパーパラメータは、限界可能性の最大化によって推定される。
新しいテストサンプルの場合、提案モデルは、対象変数と重みベクトルの値とその不確かさを閉じた形で予測することができる。
種々のベンチマークデータセットによる実験結果から,提案モデルがGPRのモデルに匹敵し,既存の解釈可能なモデルに比較して予測性能が得られ,定量的かつ定性的に,それらよりも高い解釈性が得られることを確認した。
関連論文リスト
- Scaling and renormalization in high-dimensional regression [72.59731158970894]
本稿では,様々な高次元リッジ回帰モデルの訓練および一般化性能の簡潔な導出について述べる。
本稿では,物理と深層学習の背景を持つ読者を対象に,これらのトピックに関する最近の研究成果の紹介とレビューを行う。
論文 参考訳(メタデータ) (2024-05-01T15:59:00Z) - Gaussian Process Probes (GPP) for Uncertainty-Aware Probing [61.91898698128994]
モデルによって表現される概念に関する不確実性を探索し、測定するための統一的でシンプルなフレームワークを導入する。
実験の結果,(1)ごく少数の例でも,モデルの概念表現を探索し,(2)認識の不確実性(プローブがどの程度確実か)と解離不確実性(モデルがファジィか)を正確に測定し,(3)これらの不確実性尺度と古典的手法を用いて分布データの検出を行うことができた。
論文 参考訳(メタデータ) (2023-05-29T17:00:16Z) - Correcting Model Bias with Sparse Implicit Processes [0.9187159782788579]
SIP(Sparse Implicit Processes)は,データ生成機構がモデルによって入力されるものと強く異なる場合,モデルバイアスを補正できることを示す。
合成データセットを用いて、SIPは、初期推定モデルの正確な予測よりもデータをよりよく反映する予測分布を提供することができることを示す。
論文 参考訳(メタデータ) (2022-07-21T18:00:01Z) - Training Discrete Deep Generative Models via Gapped Straight-Through
Estimator [72.71398034617607]
再サンプリングのオーバーヘッドを伴わずに分散を低減するため, GST (Gapped Straight-Through) 推定器を提案する。
この推定子は、Straight-Through Gumbel-Softmaxの本質的な性質に着想を得たものである。
実験により,提案したGST推定器は,2つの離散的な深部生成モデリングタスクの強いベースラインと比較して,優れた性能を享受できることが示された。
論文 参考訳(メタデータ) (2022-06-15T01:46:05Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
本稿では,情報的エネルギーベースモデルを事前分布として採用する,新たな生成正当性予測フレームワークを提案する。
生成サリエンシモデルを用いて,画像から画素単位の不確実性マップを得ることができ,サリエンシ予測におけるモデル信頼度を示す。
実験結果から, エネルギーベース先行モデルを用いた生成塩分率モデルでは, 精度の高い塩分率予測だけでなく, 人間の知覚と整合した信頼性の高い不確実性マップを実現できることが示された。
論文 参考訳(メタデータ) (2022-04-19T10:51:00Z) - Distributional Gradient Boosting Machines [77.34726150561087]
私たちのフレームワークはXGBoostとLightGBMをベースにしています。
我々は,このフレームワークが最先端の予測精度を実現することを示す。
論文 参考訳(メタデータ) (2022-04-02T06:32:19Z) - Gaussian Graphical Models as an Ensemble Method for Distributed Gaussian
Processes [8.4159776055506]
我々はガウスの専門家の予測をガウス図形モデル(GGM)により集約する新しいアプローチを提案する。
まず、予測最大化(EM)アルゴリズムを用いて、潜伏変数と観測変数の合同分布を推定する。
我々の新しい手法は他の最先端のDGP手法よりも優れている。
論文 参考訳(メタデータ) (2022-02-07T15:22:56Z) - Instance-Based Neural Dependency Parsing [56.63500180843504]
依存関係解析のための解釈可能な推論プロセスを持つニューラルモデルを開発する。
私たちのモデルはインスタンスベースの推論を採用しており、トレーニングセットのエッジと比較することで、依存関係のエッジを抽出し、ラベル付けします。
論文 参考訳(メタデータ) (2021-09-28T05:30:52Z) - Locally Interpretable Model Agnostic Explanations using Gaussian
Processes [2.9189409618561966]
LIME(Local Interpretable Model-Agnostic Explanations)は、単一インスタンスの予測を説明する一般的なテクニックである。
局所的解釈可能なモデルのガウス過程(GP)に基づくバリエーションを提案する。
提案手法は,LIMEに比べてはるかに少ないサンプルを用いて忠実な説明を生成可能であることを示す。
論文 参考訳(メタデータ) (2021-08-16T05:49:01Z) - Latent Gaussian Model Boosting [0.0]
ツリーブースティングは多くのデータセットに対して優れた予測精度を示す。
シミュレーションおよび実世界のデータ実験において,既存の手法と比較して予測精度が向上した。
論文 参考訳(メタデータ) (2021-05-19T07:36:30Z) - Gaussian Process Boosting [13.162429430481982]
ガウス過程と混合効果モデルを組み合わせた新しい手法を提案する。
シミュレーションおよび実世界のデータセットに対する既存手法と比較して予測精度が向上する。
論文 参考訳(メタデータ) (2020-04-06T13:19:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。