SolarGAN: Synthetic Annual Solar Irradiance Time Series on Urban
Building Facades via Deep Generative Networks
- URL: http://arxiv.org/abs/2206.00747v1
- Date: Wed, 1 Jun 2022 20:17:11 GMT
- Title: SolarGAN: Synthetic Annual Solar Irradiance Time Series on Urban
Building Facades via Deep Generative Networks
- Authors: Yufei Zhang (1), Arno Schl\"uter (1), Christoph Waibel (1) ((1) Chair
of Architecture and Building Systems (A/S), ETH Zurich, Radarweg 29, Zurich,
1043 NX, Switzerland)
- Abstract summary: Building Integrated Photovoltaics (BIPV) is a promising technology to decarbonize urban energy systems via harnessing solar energy available on building envelopes.
Existing physics-based simulation programs require significant modelling effort and computing time for generating time resolved results.
This paper proposes a data-driven model based on Deep Generative Networks (DGN) to efficiently generate high-fidelity ensembles of annual solar irradiance time series on building facades.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building Integrated Photovoltaics (BIPV) is a promising technology to
decarbonize urban energy systems via harnessing solar energy available on
building envelopes. While methods to assess solar irradiation, especially on
rooftops, are well established, the assessment on building facades usually
involves a higher effort due to more complex urban features and obstructions.
The drawback of existing physics-based simulation programs is that they require
significant manual modelling effort and computing time for generating time
resolved deterministic results. Yet, solar irradiation is highly intermittent
and representing its inherent uncertainty may be required for designing robust
BIPV energy systems. Targeting on these drawbacks, this paper proposes a
data-driven model based on Deep Generative Networks (DGN) to efficiently
generate high-fidelity stochastic ensembles of annual hourly solar irradiance
time series on building facades with uncompromised spatiotemporal resolution at
the urban scale. The only input required is easily obtainable, simple fisheye
images as categorical shading masks captured from 3D models. In principle, even
actual photographs of urban contexts can be utilized, given they are
semantically segmented. Our validations exemplify the high fidelity of the
generated time series when compared to the physics-based simulator. To
demonstrate the model's relevance for urban energy planning, we showcase its
potential for generative design by parametrically altering characteristic
features of the urban environment and producing corresponding time series on
building facades under different climatic contexts in real-time.
Related papers
- A Generative AI Technique for Synthesizing a Digital Twin for U.S. Residential Solar Adoption and Generation [0.6144680854063939]
We discuss a novel methodology to generate a granular, residential-scale realistic dataset for rooftop solar adoption across the contiguous United States.
The data-driven methodology consists of: (i) integrated machine learning models to identify PV adopters, (ii) methods to augment the data using explainable AI techniques, and (iii) methods to generate household-level hourly solar energy output.
The resulting synthetic datasets are validated using real-world data and can serve as a digital twin for modeling downstream tasks.
arXiv Detail & Related papers (2024-10-10T16:41:43Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - Long-term Wind Power Forecasting with Hierarchical Spatial-Temporal
Transformer [112.12271800369741]
Wind power is attracting increasing attention around the world due to its renewable, pollution-free, and other advantages.
Accurate wind power forecasting (WPF) can effectively reduce power fluctuations in power system operations.
Existing methods are mainly designed for short-term predictions and lack effective spatial-temporal feature augmentation.
arXiv Detail & Related papers (2023-05-30T04:03:15Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Your Autoregressive Generative Model Can be Better If You Treat It as an
Energy-Based One [83.5162421521224]
We propose a unique method termed E-ARM for training autoregressive generative models.
E-ARM takes advantage of a well-designed energy-based learning objective.
We show that E-ARM can be trained efficiently and is capable of alleviating the exposure bias problem.
arXiv Detail & Related papers (2022-06-26T10:58:41Z) - Feature Construction and Selection for PV Solar Power Modeling [1.8960797847221296]
Building a model to predict photovoltaic (PV) power generation allows decision-makers to hedge energy shortages.
The solar power output is time-series data dependent on many factors, such as irradiance and weather.
A machine learning framework for 1-hour ahead solar power prediction is developed in this paper based on the historical data.
arXiv Detail & Related papers (2022-02-13T06:49:28Z) - Combining Embeddings and Fuzzy Time Series for High-Dimensional Time
Series Forecasting in Internet of Energy Applications [0.0]
Fuzzy Time Series (FTS) models stand out as data-driven non-parametric models of easy implementation and high accuracy.
We present a new methodology for handling high-dimensional time series, by projecting the original high-dimensional data into a low dimensional embedding space.
arXiv Detail & Related papers (2021-12-03T19:50:09Z) - Times Series Forecasting for Urban Building Energy Consumption Based on
Graph Convolutional Network [20.358180125750046]
Building industry accounts for more than 40% of energy consumption in the United States.
UBEM is the foundation to support the design of energy-efficient communities.
Data-driven models integrated engineering or physical knowledge can significantly improve the urban building energy simulation.
arXiv Detail & Related papers (2021-05-27T19:02:04Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.