Core-periphery Models for Hypergraphs
- URL: http://arxiv.org/abs/2206.00783v1
- Date: Wed, 1 Jun 2022 22:11:44 GMT
- Title: Core-periphery Models for Hypergraphs
- Authors: Marios Papachristou, Jon Kleinberg
- Abstract summary: We introduce a random hypergraph model for core-periphery structure.
We develop a novel statistical inference algorithm that is able to scale to large hypergraphs with runtime that is practically linear wrt.
Our inference algorithm is capable of learning embeddings that correspond to the reputation (rank) of a node within the hypergraph.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a random hypergraph model for core-periphery structure. By
leveraging our model's sufficient statistics, we develop a novel statistical
inference algorithm that is able to scale to large hypergraphs with runtime
that is practically linear wrt. the number of nodes in the graph after a
preprocessing step that is almost linear in the number of hyperedges, as well
as a scalable sampling algorithm. Our inference algorithm is capable of
learning embeddings that correspond to the reputation (rank) of a node within
the hypergraph. We also give theoretical bounds on the size of the core of
hypergraphs generated by our model. We experiment with hypergraph data that
range to $\sim 10^5$ hyperedges mined from the Microsoft Academic Graph, Stack
Exchange, and GitHub and show that our model outperforms baselines wrt.
producing good fits.
Related papers
- SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
We introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way.
We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures.
The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network.
arXiv Detail & Related papers (2024-10-04T07:49:57Z) - HyperSMOTE: A Hypergraph-based Oversampling Approach for Imbalanced Node Classifications [2.172034690069702]
We propose HyperSMOTE as a solution to alleviate the class imbalance issue in hypergraph learning.
We synthesize new nodes based on samples from minority classes and their neighbors.
In order to solve the problem on integrating the new node into the hypergraph, we train a decoder based on the original hypergraph incidence matrix.
arXiv Detail & Related papers (2024-09-09T08:01:28Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - HyperSF: Spectral Hypergraph Coarsening via Flow-based Local Clustering [9.438207505148947]
We propose an efficient spectral hypergraph coarsening scheme (HyperSF) for preserving the original spectral (structural) properties of hypergraphs.
Our results show that the proposed hypergraph coarsening algorithm can significantly improve the multi-way conductance of hypergraph clustering.
arXiv Detail & Related papers (2021-08-17T22:20:23Z) - Generative hypergraph clustering: from blockmodels to modularity [26.99290024958576]
We propose an expressive generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes.
We show that hypergraph Louvain is highly scalable, including as an example an experiment on a synthetic hypergraph of one million nodes.
We use our model to analyze different patterns of higher-order structure in school contact networks, U.S. congressional bill cosponsorship, U.S. congressional committees, product categories in co-purchasing behavior, and hotel locations.
arXiv Detail & Related papers (2021-01-24T00:25:22Z) - Scalable Deep Generative Modeling for Sparse Graphs [105.60961114312686]
Existing deep neural methods require $Omega(n2)$ complexity by building up the adjacency matrix.
We develop a novel autoregressive model, named BiGG, that utilizes this sparsity to avoid generating the full adjacency matrix.
During training this autoregressive model can be parallelized with $O(log n)$ synchronization stages.
arXiv Detail & Related papers (2020-06-28T04:37:57Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
We introduce a novel learning problem for dense subgraph discovery.
We first propose a edge-time algorithm that obtains a nearly-optimal solution with high probability.
We then design a more scalable algorithm with a theoretical guarantee.
arXiv Detail & Related papers (2020-06-24T11:37:33Z) - Heuristic Semi-Supervised Learning for Graph Generation Inspired by
Electoral College [80.67842220664231]
We propose a novel pre-processing technique, namely ELectoral COllege (ELCO), which automatically expands new nodes and edges to refine the label similarity within a dense subgraph.
In all setups tested, our method boosts the average score of base models by a large margin of 4.7 points, as well as consistently outperforms the state-of-the-art.
arXiv Detail & Related papers (2020-06-10T14:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.