SPHINX: Structural Prediction using Hypergraph Inference Network
- URL: http://arxiv.org/abs/2410.03208v1
- Date: Fri, 4 Oct 2024 07:49:57 GMT
- Title: SPHINX: Structural Prediction using Hypergraph Inference Network
- Authors: Iulia Duta, Pietro LiĆ²,
- Abstract summary: We introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way.
We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures.
The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network.
- Score: 19.853413818941608
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The importance of higher-order relations is widely recognized in a large number of real-world systems. However, annotating them is a tedious and sometimes impossible task. Consequently, current approaches for data modelling either ignore the higher-order interactions altogether or simplify them into pairwise connections. In order to facilitate higher-order processing, even when a hypergraph structure is not available, we introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way, solely from the final node-level signal. The model consists of a soft, differentiable clustering method used to sequentially predict, for each hyperedge, the probability distribution over the nodes and a sampling algorithm that converts them into an explicit hypergraph structure. We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures, addressing some of the training instabilities exhibited by prior works. The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network, facilitating the capture of higher-order interaction in domains where annotating them is difficult. Through extensive ablation studies and experiments conducted on two challenging datasets for trajectory prediction, we demonstrate that our model is capable of inferring suitable latent hypergraphs, that are interpretable and enhance the final performance.
Related papers
- Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Sheaf Hypergraph Networks [10.785525697855498]
We introduce cellular sheaves for hypergraphs, a mathematical construction that adds extra structure to the conventional hypergraph.
Drawing inspiration from existing Laplacians in the literature, we develop two unique formulations of sheaf hypergraph Laplacians.
We employ these sheaf hypergraph Laplacians to design two categories of models: Sheaf Hypergraph Neural Networks and Sheaf Hypergraph Convolutional Networks.
arXiv Detail & Related papers (2023-09-29T10:25:43Z) - Hypergraph Structure Inference From Data Under Smoothness Prior [46.568839316694515]
We propose a method to infer the probability for each potential hyperedge without labelled data as supervision.
We use this prior to derive the relation between the hypergraph structure and the node features via probabilistic modelling.
Experiments on both synthetic and real-world data demonstrate that our method can learn meaningful hypergraph structures from data more efficiently than existing hypergraph structure inference methods.
arXiv Detail & Related papers (2023-08-27T18:28:58Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - Tensorized Hypergraph Neural Networks [69.65385474777031]
We propose a novel adjacency-tensor-based textbfTensorized textbfHypergraph textbfNeural textbfNetwork (THNN)
THNN is faithful hypergraph modeling framework through high-order outer product feature passing message.
Results from experiments on two widely used hypergraph datasets for 3-D visual object classification show the model's promising performance.
arXiv Detail & Related papers (2023-06-05T03:26:06Z) - Equivariant Hypergraph Diffusion Neural Operators [81.32770440890303]
Hypergraph neural networks (HNNs) using neural networks to encode hypergraphs provide a promising way to model higher-order relations in data.
This work proposes a new HNN architecture named ED-HNN, which provably represents any continuous equivariant hypergraph diffusion operators.
We evaluate ED-HNN for node classification on nine real-world hypergraph datasets.
arXiv Detail & Related papers (2022-07-14T06:17:00Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-12T02:07:07Z) - Learnable Hypergraph Laplacian for Hypergraph Learning [34.28748027233654]
HyperGraph Convolutional Neural Networks (HGCNNs) have demonstrated their potential in modeling high-order relations preserved in graph structured data.
We propose the first learning-based method tailored for constructing adaptive hypergraph structure, termed HypERgrAph Laplacian aDaptor (HERALD)
HERALD adaptively optimize the adjacency relationship between hypernodes and hyperedges in an end-to-end manner and thus the task-aware hypergraph is learned.
arXiv Detail & Related papers (2021-06-10T12:37:55Z) - Generative hypergraph clustering: from blockmodels to modularity [26.99290024958576]
We propose an expressive generative model of clustered hypergraphs with heterogeneous node degrees and edge sizes.
We show that hypergraph Louvain is highly scalable, including as an example an experiment on a synthetic hypergraph of one million nodes.
We use our model to analyze different patterns of higher-order structure in school contact networks, U.S. congressional bill cosponsorship, U.S. congressional committees, product categories in co-purchasing behavior, and hotel locations.
arXiv Detail & Related papers (2021-01-24T00:25:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.