Finite-Time Analysis of Entropy-Regularized Neural Natural Actor-Critic
Algorithm
- URL: http://arxiv.org/abs/2206.00833v1
- Date: Thu, 2 Jun 2022 02:13:29 GMT
- Title: Finite-Time Analysis of Entropy-Regularized Neural Natural Actor-Critic
Algorithm
- Authors: Semih Cayci, Niao He, R. Srikant
- Abstract summary: We present a finite-time analysis of Natural actor-critic (NAC) with neural network approximation.
We identify the roles of neural networks, regularization and optimization techniques to achieve provably good performance.
- Score: 29.978816372127085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Natural actor-critic (NAC) and its variants, equipped with the representation
power of neural networks, have demonstrated impressive empirical success in
solving Markov decision problems with large state spaces. In this paper, we
present a finite-time analysis of NAC with neural network approximation, and
identify the roles of neural networks, regularization and optimization
techniques (e.g., gradient clipping and averaging) to achieve provably good
performance in terms of sample complexity, iteration complexity and
overparametrization bounds for the actor and the critic. In particular, we
prove that (i) entropy regularization and averaging ensure stability by
providing sufficient exploration to avoid near-deterministic and strictly
suboptimal policies and (ii) regularization leads to sharp sample complexity
and network width bounds in the regularized MDPs, yielding a favorable
bias-variance tradeoff in policy optimization. In the process, we identify the
importance of uniform approximation power of the actor neural network to
achieve global optimality in policy optimization due to distributional shift.
Related papers
- On the Global Convergence of Natural Actor-Critic with Two-layer Neural
Network Parametrization [38.32265770020665]
We study a natural actor-critic algorithm that utilizes neural networks to represent the critic.
Our aim is to establish sample complexity guarantees for this algorithm, achieving a deeper understanding of its performance characteristics.
arXiv Detail & Related papers (2023-06-18T06:22:04Z) - Neural Characteristic Activation Analysis and Geometric Parameterization for ReLU Networks [2.2713084727838115]
We introduce a novel approach for analyzing the training dynamics of ReLU networks by examining the characteristic activation boundaries of individual neurons.
Our proposed analysis reveals a critical instability in common neural network parameterizations and normalizations during convergence optimization, which impedes fast convergence and hurts performance.
arXiv Detail & Related papers (2023-05-25T10:19:13Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
We introduce UnRolled Federated learning (SURF), a method that expands algorithm unrolling to federated learning.
Our proposed method tackles two challenges of this expansion, namely the need to feed whole datasets to the unrolleds and the decentralized nature of federated learning.
arXiv Detail & Related papers (2023-05-24T17:26:22Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Iterative Surrogate Model Optimization (ISMO): An active learning
algorithm for PDE constrained optimization with deep neural networks [14.380314061763508]
We present a novel active learning algorithm, termed as iterative surrogate model optimization (ISMO)
This algorithm is based on deep neural networks and its key feature is the iterative selection of training data through a feedback loop between deep neural networks and any underlying standard optimization algorithm.
arXiv Detail & Related papers (2020-08-13T07:31:07Z) - The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural
Networks: an Exact Characterization of the Optimal Solutions [51.60996023961886]
We prove that finding all globally optimal two-layer ReLU neural networks can be performed by solving a convex optimization program with cone constraints.
Our analysis is novel, characterizes all optimal solutions, and does not leverage duality-based analysis which was recently used to lift neural network training into convex spaces.
arXiv Detail & Related papers (2020-06-10T15:38:30Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z) - Neural Proximal/Trust Region Policy Optimization Attains Globally
Optimal Policy [119.12515258771302]
We show that a variant of PPOO equipped with over-parametrization converges to globally optimal networks.
The key to our analysis is the iterate of infinite gradient under a notion of one-dimensional monotonicity, where the gradient and are instant by networks.
arXiv Detail & Related papers (2019-06-25T03:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.