論文の概要: Modeling electronic health record data using a knowledge-graph-embedded
topic model
- arxiv url: http://arxiv.org/abs/2206.01436v1
- Date: Fri, 3 Jun 2022 07:58:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-06 15:19:18.006113
- Title: Modeling electronic health record data using a knowledge-graph-embedded
topic model
- Title(参考訳): 知識グラフ埋め込みトピックモデルを用いた電子健康記録データのモデル化
- Authors: Yuesong Zou, Ahmad Pesaranghader, Aman Verma, David Buckeridge and Yue
Li
- Abstract要約: エンド・ツー・エンドの知識グラフに基づくマルチモーダル組込みトピックモデルであるKG-ETMを提案する。
KG-ETMは、医療知識グラフから埋め込みを学習することで、HRデータから潜伏病トピックを抽出する。
また,本モデルでは,患者層化と薬剤推奨のための解釈可能かつ正確な患者表現も発見できる。
- 参考スコア(独自算出の注目度): 6.170782354287972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of electronic health record (EHR) datasets opens up
promising opportunities to understand human diseases in a systematic way.
However, effective extraction of clinical knowledge from the EHR data has been
hindered by its sparsity and noisy information. We present KG-ETM, an
end-to-end knowledge graph-based multimodal embedded topic model. KG-ETM
distills latent disease topics from EHR data by learning the embedding from the
medical knowledge graphs. We applied KG-ETM to a large-scale EHR dataset
consisting of over 1 million patients. We evaluated its performance based on
EHR reconstruction and drug imputation. KG-ETM demonstrated superior
performance over the alternative methods on both tasks. Moreover, our model
learned clinically meaningful graph-informed embedding of the EHR codes. In
additional, our model is also able to discover interpretable and accurate
patient representations for patient stratification and drug recommendations.
- Abstract(参考訳): 電子健康記録(EHR)データセットの急速な成長は、人間の病気を体系的に理解する有望な機会を開く。
しかし,ERHデータから有効な臨床知識の抽出は,その疎度とノイズ情報によって妨げられている。
エンド・ツー・エンドの知識グラフに基づくマルチモーダル組込みトピックモデルであるKG-ETMを提案する。
KG-ETMは、医療知識グラフから埋め込みを学習することで、HRデータから潜伏病トピックを抽出する。
我々はKG-ETMを100万人以上の患者からなる大規模EHRデータセットに適用した。
ehrの再構成と薬物注入による性能評価を行った。
KG-ETMは両タスクの代替手法よりも優れた性能を示した。
さらに,EHR符号のグラフインフォームド埋め込みを臨床的に学習した。
さらに,本モデルでは,患者層化と薬剤推奨のための解釈可能かつ正確な患者表現も発見できる。
関連論文リスト
- DualMAR: Medical-Augmented Representation from Dual-Expertise Perspectives [20.369746122143063]
本研究では,個人観測データと公開知識ベースによる予測タスクを強化するフレームワークであるDualMARを提案する。
極空間上の座標の取得と角化により、DualMARはKGからのリッチな階層的およびセマンティックな埋め込みに基づく正確な予測を可能にする。
論文 参考訳(メタデータ) (2024-10-25T20:25:22Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
EHRPDと呼ばれる新しいEHRデータ生成モデルを提案する。
時間間隔推定を組み込んだ拡散モデルである。
我々は2つの公開データセットで実験を行い、忠実さ、プライバシー、実用性の観点からEPHPDを評価する。
論文 参考訳(メタデータ) (2024-06-20T02:20:23Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
EHRデータを予測モデリングに利用すると、その特徴からいくつかの課題が生じる。
深層学習は、医療を含む様々な応用においてその優位性を示している。
論文 参考訳(メタデータ) (2024-02-02T00:31:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Knowledge Graph Embedding with Electronic Health Records Data via Latent
Graphical Block Model [13.398292423857756]
潜在的グラフィカルブロックモデル (LGBM) を用いて, EHR特徴量間の条件依存構造を推定する。
提案した推定器の統計率を確立し,ブロック構造の完全回復を示す。
論文 参考訳(メタデータ) (2023-05-31T16:18:46Z) - Dynamic Graph Enhanced Contrastive Learning for Chest X-ray Report
Generation [92.73584302508907]
コントラスト学習を用いた医療レポート作成を支援するために,動的構造とノードを持つ知識グラフを提案する。
詳しくは、グラフの基本構造は一般知識から事前構築される。
各イメージ機能は、レポート生成のためにデコーダモジュールに入力する前に、独自の更新グラフに統合される。
論文 参考訳(メタデータ) (2023-03-18T03:53:43Z) - On the Importance of Clinical Notes in Multi-modal Learning for EHR Data [0.0]
電子健康記録データと臨床ノートを併用することにより,患者モニタリングの予測性能が向上することが従来研究で示されている。
EHRデータと臨床ノートを組み合わせることで、最先端のEHRデータモデルよりもパフォーマンスが大幅に向上することを確認した。
次に、臨床医のメモよりも、患者の状態に関するより広い文脈を含むメモのサブセットから、改善がほぼ排他的に生じることを示す分析を行った。
論文 参考訳(メタデータ) (2022-12-06T15:18:57Z) - Integrated Convolutional and Recurrent Neural Networks for Health Risk
Prediction using Patient Journey Data with Many Missing Values [9.418011774179794]
本稿では,統合畳み込みニューラルネットワークとリカレントニューラルネットワークを用いたEMH患者旅行データモデリングのためのエンドツーエンドアプローチを提案する。
本モデルでは,各患者旅行における長期的・短期的時間的パターンを抽出し,インパルスデータ生成を伴わずに,高レベルのEHRデータの欠落を効果的に処理することができる。
論文 参考訳(メタデータ) (2022-11-11T07:36:18Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - Demographic Aware Probabilistic Medical Knowledge Graph Embeddings of
Electronic Medical Records [0.5524804393257919]
電子医療記録(EMR)から構築された医療知識グラフ(KG)には、患者や医療機関に関する豊富な情報が含まれている。
DarLINGは、患者の人口統計を対応するハイパープレーンと関連付けることによって、医療現場に人口統計を明示的に組み込む人口統計認識医療KG埋め込みフレームワークです。
EMRデータから構築した医用KGを用いた治療薬のリンク予測によるDARlingの評価を行い,既存のKG埋め込みモデルと比較して優れた性能を示した。
論文 参考訳(メタデータ) (2021-03-22T15:45:05Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。