論文の概要: Indirect Active Learning
- arxiv url: http://arxiv.org/abs/2206.01454v1
- Date: Fri, 3 Jun 2022 08:37:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-06 22:51:02.339839
- Title: Indirect Active Learning
- Title(参考訳): 間接的アクティブラーニング
- Authors: Shashank Singh
- Abstract要約: 局所的にX$とY$の関係を推定するためのミニマックス収束率について検討する。
多くの場合、アクティブな学習には利点があるが、この利点は2つの受動的実験を連続して実行する単純な2段階学習者によって完全に実現されている。
- 参考スコア(独自算出の注目度): 7.84669346764821
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional models of active learning assume a learner can directly
manipulate or query a covariate $X$ in order to study its relationship with a
response $Y$. However, if $X$ is a feature of a complex system, it may be
possible only to indirectly influence $X$ by manipulating a control variable
$Z$, a scenario we refer to as Indirect Active Learning. Under a nonparametric
model of Indirect Active Learning with a fixed budget, we study minimax
convergence rates for estimating the relationship between $X$ and $Y$ locally
at a point, obtaining different rates depending on the complexities and noise
levels of the relationships between $Z$ and $X$ and between $X$ and $Y$. We
also identify minimax rates for passive learning under comparable assumptions.
In many cases, our results show that, while there is an asymptotic benefit to
active learning, this benefit is fully realized by a simple two-stage learner
that runs two passive experiments in sequence.
- Abstract(参考訳): 従来のアクティブラーニングモデルでは、学習者は共変量$X$を直接操作したり、クエリしたりすることで、その応答とY$の関係を研究することができる。
しかし、もし$X$が複雑なシステムの機能であるなら、制御変数$Z$を操作することで、間接的に$X$に影響を与えるだけでよい。
一定予算の間接的アクティブラーニングの非パラメトリックモデルの下で,局所的にy$x$とy$y$の関係を推定するミニマックス収束率を調べ,z$とy$の関係の複雑度とノイズレベル,およびy$x$とy$との相関関係について検討した。
また、同じ仮定の下で受動的学習のためのミニマックスレートを同定する。
多くの場合,アクティブラーニングには漸近的な利点があるが,この利点は2段階のパッシブ実験を連続的に実行する単純な2段階学習者によって完全に実現されている。
関連論文リスト
- Sample Efficient Reinforcement Learning with Partial Dynamics Knowledge [0.704590071265998]
オンラインQ-ラーニング手法のサンプル複雑性について,動的知識が利用可能であったり,効率的に学習できたりした場合に検討する。
我々は,$f$の完全知識の下で,$tildemathcalO(textPoly(H)sqrtSAT)$ regretを達成する楽観的なQ-ラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-19T19:53:58Z) - Testable Learning with Distribution Shift [9.036777309376697]
分散シフトを伴うテスト可能学習と呼ばれる新しいモデルを定義する。
テスト分布上の分類器の性能を証明可能なアルゴリズムを得る。
ハーフスペースやハーフスペースの交点,決定木といった概念クラスを学ぶ上で,いくつかの肯定的な結果が得られる。
論文 参考訳(メタデータ) (2023-11-25T23:57:45Z) - MERMAIDE: Learning to Align Learners using Model-Based Meta-Learning [62.065503126104126]
本研究では,先見のつかない学習エージェントの報酬を効率よく効果的に介入し,望ましい結果を導き出す方法について検討する。
これはオークションや課税のような現実世界の多くの設定に関係しており、プリンシパルは学習行動や実際の人々の報酬を知らないかもしれない。
モデルに基づくメタ学習フレームワークであるMERMAIDEを導入し,配布外エージェントに迅速に適応できるプリンシパルを訓練する。
論文 参考訳(メタデータ) (2023-04-10T15:44:50Z) - Multi-Task Imitation Learning for Linear Dynamical Systems [50.124394757116605]
線形システム上での効率的な模倣学習のための表現学習について検討する。
学習対象ポリシーによって生成された軌道上の模倣ギャップは、$tildeOleft(frack n_xHN_mathrmshared + frack n_uN_mathrmtargetright)$で制限されている。
論文 参考訳(メタデータ) (2022-12-01T00:14:35Z) - The Projected Covariance Measure for assumption-lean variable significance testing [3.8936058127056357]
単純だが一般的なアプローチは、線形モデルを指定し、次に$X$の回帰係数が 0 でないかどうかをテストすることである。
条件付き平均独立性のモデルフリーなnullをテストする問題、すなわち条件付き平均の$Y$$$X$と$Z$は$X$に依存しない。
本稿では,加法モデルやランダムフォレストなど,柔軟な非パラメトリックあるいは機械学習手法を活用可能な,シンプルで汎用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-03T17:55:50Z) - Inconsistent Few-Shot Relation Classification via Cross-Attentional
Prototype Networks with Contrastive Learning [16.128652726698522]
本稿では,Prototype Network-based Cross-attention contrastive Learning (ProtoCACL)を提案する。
実験結果から,我々のProtoCACLは,非一貫性な$K$と非一貫性な$N$設定の両方で,最先端のベースラインモデルより優れていることが示された。
論文 参考訳(メタデータ) (2021-10-13T07:47:13Z) - Active Learning for Contextual Search with Binary Feedbacks [2.6424064030995957]
第一価格オークションなどの応用によって動機付けられた文脈探索における学習問題について検討する。
本稿では,三分探索手法とマージンに基づく能動学習手法を併用した三分探索手法を提案する。
論文 参考訳(メタデータ) (2021-10-03T19:05:29Z) - Mediated Uncoupled Learning: Learning Functions without Direct
Input-output Correspondences [80.95776331769899]
ペア化されたデータがない場合、$X$から$Y$を予測するタスクを考えます。
単純なアプローチは、$S_X$で$U$から$U$を予測し、$S_Y$で$U$から$Y$を予測することである。
我々は$U$を予測しない新しい方法を提案するが、$f(X)$と$S_X$をトレーニングすることで$Y = f(X)$を直接学習し、$h(U)$を予測する。
論文 参考訳(メタデータ) (2021-07-16T22:13:29Z) - Instance-optimality in optimal value estimation: Adaptivity via
variance-reduced Q-learning [99.34907092347733]
本稿では,マルコフ決定過程における最適な$Q$値関数を離散状態と動作で推定する問題を解析する。
局所的なミニマックスフレームワークを用いて、この関数は任意の推定手順の精度の低い境界に現れることを示す。
他方,Q$ラーニングの分散還元版を解析することにより,状態と行動空間の対数的要因まで,下位境界のシャープさを確立する。
論文 参考訳(メタデータ) (2021-06-28T00:38:54Z) - The Curse of Passive Data Collection in Batch Reinforcement Learning [82.6026077420886]
高い利害関係のアプリケーションでは、アクティブな実験は危険すぎると考えられ、データはしばしば受動的に収集される。
バンディットやパッシブ、アクティブなデータ収集などの単純な場合も同様に効果的であるが、制御された状態のシステムからデータを集める場合、パッシブサンプリングの価格ははるかに高い。
論文 参考訳(メタデータ) (2021-06-18T07:54:23Z) - Agnostic learning with unknown utilities [70.14742836006042]
現実世界の多くの問題において、決定の効用は基礎となる文脈である$x$ と decision $y$ に依存する。
我々はこれを未知のユーティリティによる不可知学習として研究する。
サンプルされた点のみのユーティリティを推定することで、よく一般化した決定関数を学習できることを示す。
論文 参考訳(メタデータ) (2021-04-17T08:22:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。