論文の概要: Examining the behaviour of state-of-the-art convolutional neural
networks for brain tumor detection with and without transfer learning
- arxiv url: http://arxiv.org/abs/2206.01735v1
- Date: Thu, 2 Jun 2022 18:49:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-12 20:43:30.118111
- Title: Examining the behaviour of state-of-the-art convolutional neural
networks for brain tumor detection with and without transfer learning
- Title(参考訳): トランスファー・ラーニングを用いた脳腫瘍検出のための最先端畳み込みニューラルネットワークの挙動の検討
- Authors: Md. Atik Ahamed, Rabeya Tus Sadia
- Abstract要約: 本研究における2種類のデータセットについて,最先端CNNモデルを用いて検討した。
EfficientNet-B5アーキテクチャは、バイナリ分類データセットのすべての最先端モデルを99.75%と98.61%の精度で上回る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distinguishing normal from malignant and determining the tumor type are
critical components of brain tumor diagnosis. Two different kinds of dataset
are investigated using state-of-the-art CNN models in this research work. One
dataset(binary) has images of normal and tumor types, while
another(multi-class) provides all images of tumors classified as glioma,
meningioma, or pituitary. The experiments were conducted in these dataset with
transfer learning from pre-trained weights from ImageNet as well as
initializing the weights randomly. The experimental environment is equivalent
for all models in this study in order to make a fair comparison. For both of
the dataset, the validation set are same for all the models where train data is
60% while the rest is 40% for validation. With the proposed techniques in this
research, the EfficientNet-B5 architecture outperforms all the state-of-the-art
models in the binary-classification dataset with the accuracy of 99.75% and
98.61% accuracy for the multi-class dataset. This research also demonstrates
the behaviour of convergence of validation loss in different weight
initialization techniques.
- Abstract(参考訳): 悪性腫瘍と診断し、腫瘍の種類を決定することは、脳腫瘍診断の重要な要素である。
本研究では,最先端cnnモデルを用いた2種類のデータセットについて検討した。
1つのデータセット(バイナリー)は正常および腫瘍タイプの画像を持ち、もう1つの(マルチクラス)はグリオーマ、髄膜腫または下垂体に分類される腫瘍の全ての画像を提供する。
これらのデータセットでは,imagenetから事前学習した重みから転送学習を行い,重みをランダムに初期化する実験を行った。
実験環境は、公平な比較を行うために、本研究の全てのモデルに等価である。
両方のデータセットにおいて、検証セットは、列車データが60%、残りが40%であるすべてのモデルで同じである。
この研究で提案された手法により、EfficientNet-B5アーキテクチャは、バイナリ分類データセットのすべての最先端モデルを99.75%と98.61%の精度でパフォーマンスする。
本研究は,異なる重み初期化手法における検証損失の収束挙動も示す。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
医療画像データセットは、コンピュータ支援診断、治療計画、医学研究に使用される訓練モデルに不可欠である。
データ分散のばらつき、データの不足、ジェネリックイメージから事前トレーニングされたモデルを使用する場合の転送学習の問題などである。
本稿では,データ不足と分散不均衡の影響を軽減するために,一連の手法を統合したシームズニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T16:59:27Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Osteosarcoma Tumor Detection using Transfer Learning Models [0.0]
本稿では,骨肉腫腫瘍検出のための転写学習モデルの性能について検討する。
InceptionResNetV2 は最高精度 (93.29%)、NasNetLarge (90.91%)、ResNet50 (89.83%)、EfficientNetB7 (62.77%) を達成した。
論文 参考訳(メタデータ) (2023-05-16T17:58:29Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - A Novel Framework for Brain Tumor Detection Based on Convolutional
Variational Generative Models [6.726255259929498]
本稿では,脳腫瘍の検出と分類のための新しい枠組みを提案する。
提案フレームワークは、全体的な検出精度96.88%を取得する。
提案されたフレームワークは,脳腫瘍の正確な検出システムとして期待されている。
論文 参考訳(メタデータ) (2022-02-20T16:14:01Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - A Deep Learning Study on Osteosarcoma Detection from Histological Images [6.341765152919201]
最も一般的な悪性骨腫瘍は骨肉腫である。
CNNは、外科医の作業量を著しく減らし、患者の状態の予後を良くする。
CNNは、より信頼できるパフォーマンスを達成するために、大量のデータをトレーニングする必要があります。
論文 参考訳(メタデータ) (2020-11-02T18:16:17Z) - Brain Tumor Anomaly Detection via Latent Regularized Adversarial Network [34.81845999071626]
本稿では,脳腫瘍の異常検出アルゴリズムを提案する。
健常な(正常な)脳画像のみを訓練する半教師付き異常検出モデルが提案されている。
論文 参考訳(メタデータ) (2020-07-09T12:12:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。