Dimension Independent Generalization of DP-SGD for Overparameterized
Smooth Convex Optimization
- URL: http://arxiv.org/abs/2206.01836v1
- Date: Fri, 3 Jun 2022 22:03:05 GMT
- Title: Dimension Independent Generalization of DP-SGD for Overparameterized
Smooth Convex Optimization
- Authors: Yi-An Ma, Teodor Vanislavov Marinov, Tong Zhang
- Abstract summary: This paper considers the generalization performance of differentially private convex learning.
We demonstrate that the convergence analysis of Langevin algorithms can be used to obtain new generalization bounds with differential privacy guarantees for DP-SGD.
- Score: 24.644583626705742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the generalization performance of differentially private
convex learning. We demonstrate that the convergence analysis of Langevin
algorithms can be used to obtain new generalization bounds with differential
privacy guarantees for DP-SGD. More specifically, by using some recently
obtained dimension-independent convergence results for stochastic Langevin
algorithms with convex objective functions, we obtain $O(n^{-1/4})$ privacy
guarantees for DP-SGD with the optimal excess generalization error of
$\tilde{O}(n^{-1/2})$ for certain classes of overparameterized smooth convex
optimization problems. This improves previous DP-SGD results for such problems
that contain explicit dimension dependencies, so that the resulting
generalization bounds become unsuitable for overparameterized models used in
practical applications.
Related papers
- Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Normalized/Clipped SGD with Perturbation for Differentially Private
Non-Convex Optimization [94.06564567766475]
DP-SGD and DP-NSGD mitigate the risk of large models memorizing sensitive training data.
We show that these two algorithms achieve similar best accuracy while DP-NSGD is comparatively easier to tune than DP-SGD.
arXiv Detail & Related papers (2022-06-27T03:45:02Z) - Efficient Private SCO for Heavy-Tailed Data via Averaged Clipping [40.69950711262191]
We consider differentially private convex optimization for heavy-tailed data with the guarantee of being differentially private (DP)
We establish new convergence results and improved complexity bounds for the proposed algorithm called AClipped-dpSGD for constrained and unconstrained convex problems.
arXiv Detail & Related papers (2022-06-27T01:39:15Z) - Differential Privacy Guarantees for Stochastic Gradient Langevin
Dynamics [2.9477900773805032]
We show that the privacy loss converges exponentially fast for smooth and strongly convex objectives under constant step size.
We propose an implementation and our experiments show the practical utility of our approach compared to classical DP-SGD libraries.
arXiv Detail & Related papers (2022-01-28T08:21:31Z) - Differentially Private SGDA for Minimax Problems [83.57322009102973]
We prove that gradient descent ascent (SGDA) can achieve optimal utility in terms of weak primal-dual population risk.
This is the first-ever-known result for non-smoothly-strongly-concave setting.
arXiv Detail & Related papers (2022-01-22T13:05:39Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses [52.039438701530905]
We provide sharp upper and lower bounds for several forms of gradient descent (SGD) on arbitrary Lipschitz nonsmooth convex losses.
Our bounds allow us to derive a new algorithm for differentially private nonsmooth convex optimization with optimal excess population risk.
arXiv Detail & Related papers (2020-06-12T02:45:21Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.