Differential Privacy Guarantees for Stochastic Gradient Langevin
Dynamics
- URL: http://arxiv.org/abs/2201.11980v1
- Date: Fri, 28 Jan 2022 08:21:31 GMT
- Title: Differential Privacy Guarantees for Stochastic Gradient Langevin
Dynamics
- Authors: Th\'eo Ryffel, Francis Bach, David Pointcheval
- Abstract summary: We show that the privacy loss converges exponentially fast for smooth and strongly convex objectives under constant step size.
We propose an implementation and our experiments show the practical utility of our approach compared to classical DP-SGD libraries.
- Score: 2.9477900773805032
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyse the privacy leakage of noisy stochastic gradient descent by
modeling R\'enyi divergence dynamics with Langevin diffusions. Inspired by
recent work on non-stochastic algorithms, we derive similar desirable
properties in the stochastic setting. In particular, we prove that the privacy
loss converges exponentially fast for smooth and strongly convex objectives
under constant step size, which is a significant improvement over previous
DP-SGD analyses. We also extend our analysis to arbitrary sequences of varying
step sizes and derive new utility bounds. Last, we propose an implementation
and our experiments show the practical utility of our approach compared to
classical DP-SGD libraries.
Related papers
- Scalable DP-SGD: Shuffling vs. Poisson Subsampling [61.19794019914523]
We provide new lower bounds on the privacy guarantee of the multi-epoch Adaptive Linear Queries (ABLQ) mechanism with shuffled batch sampling.
We show substantial gaps when compared to Poisson subsampling; prior analysis was limited to a single epoch.
We introduce a practical approach to implement Poisson subsampling at scale using massively parallel computation.
arXiv Detail & Related papers (2024-11-06T19:06:16Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
We study differentially private (DP) optimization problems under sparsity of individual gradients.
Building on this, we obtain pure- and approximate-DP algorithms with almost optimal rates for convex optimization with sparse gradients.
arXiv Detail & Related papers (2024-04-16T20:01:10Z) - Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation [51.248784084461334]
We prove new convergence rates for a generalized version of Nesterov acceleration underrho conditions.
Our analysis reduces the dependence on the strong growth constant from $$ to $sqrt$ as compared to prior work.
arXiv Detail & Related papers (2024-04-03T00:41:19Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Using Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) to ensure Differential Privacy (DP) comes at the cost of model performance degradation.
We propose a new error-feedback (EF) DP algorithm as an alternative to DPSGD-GC.
We establish an algorithm-specific DP analysis for our proposed algorithm, providing privacy guarantees based on R'enyi DP.
arXiv Detail & Related papers (2023-11-24T17:56:44Z) - Efficient Private SCO for Heavy-Tailed Data via Averaged Clipping [40.69950711262191]
We consider differentially private convex optimization for heavy-tailed data with the guarantee of being differentially private (DP)
We establish new convergence results and improved complexity bounds for the proposed algorithm called AClipped-dpSGD for constrained and unconstrained convex problems.
arXiv Detail & Related papers (2022-06-27T01:39:15Z) - Dimension Independent Generalization of DP-SGD for Overparameterized
Smooth Convex Optimization [24.644583626705742]
This paper considers the generalization performance of differentially private convex learning.
We demonstrate that the convergence analysis of Langevin algorithms can be used to obtain new generalization bounds with differential privacy guarantees for DP-SGD.
arXiv Detail & Related papers (2022-06-03T22:03:05Z) - Computing the Variance of Shuffling Stochastic Gradient Algorithms via
Power Spectral Density Analysis [6.497816402045099]
Two common alternatives to gradient descent (SGD) with theoretical benefits are random reshuffling (SGDRR) and shuffle-once (SGD-SO)
We study the stationary variances of SGD, SGDRR and SGD-SO, whose leading terms decrease in this order, and obtain simple approximations.
arXiv Detail & Related papers (2022-06-01T17:08:04Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - Improving Differentially Private SGD via Randomly Sparsified Gradients [31.295035726077366]
Differentially private gradient observation (DP-SGD) has been widely adopted in deep learning to provide rigorously defined privacy bound compression.
We propose an and utilize RS to strengthen communication cost and strengthen privacy bound compression.
arXiv Detail & Related papers (2021-12-01T21:43:34Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Convergence rates and approximation results for SGD and its
continuous-time counterpart [16.70533901524849]
This paper proposes a thorough theoretical analysis of convex Gradient Descent (SGD) with non-increasing step sizes.
First, we show that the SGD can be provably approximated by solutions of inhomogeneous Differential Equation (SDE) using coupling.
Recent analyses of deterministic and optimization methods by their continuous counterpart, we study the long-time behavior of the continuous processes at hand and non-asymptotic bounds.
arXiv Detail & Related papers (2020-04-08T18:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.