論文の概要: C$^3$Fusion: Consistent Contrastive Colon Fusion, Towards Deep SLAM in
Colonoscopy
- arxiv url: http://arxiv.org/abs/2206.01961v1
- Date: Sat, 4 Jun 2022 10:38:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 14:17:15.245615
- Title: C$^3$Fusion: Consistent Contrastive Colon Fusion, Towards Deep SLAM in
Colonoscopy
- Title(参考訳): c$^3$fusion : 大腸内視鏡下深部スラムに対するコントラスト型大腸癒合術
- Authors: Erez Posner and Adi Zholkover and Netanel Frank and Moshe Bouhnik
- Abstract要約: 光内視鏡(OC)による3D大腸再建による非検査面の検出は未解決の問題である。
近年の手法では,(1)フレーム・ツー・フレーム(あるいはフレーム・ツー・モデル)の予測が多くのトラッキング障害を引き起こし,(2)スキャン品質を犠牲にしてポイントベース表現に頼っている。
本稿では,これらの課題を終末まで解決し,定量的かつ定性的かつ堅牢な3次元大腸再建を実現するための新しい再構築フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: 3D colon reconstruction from Optical Colonoscopy (OC) to detect non-examined
surfaces remains an unsolved problem. The challenges arise from the nature of
optical colonoscopy data, characterized by highly reflective low-texture
surfaces, drastic illumination changes and frequent tracking loss. Recent
methods demonstrate compelling results, but suffer from: (1) frangible
frame-to-frame (or frame-to-model) pose estimation resulting in many tracking
failures; or (2) rely on point-based representations at the cost of scan
quality. In this paper, we propose a novel reconstruction framework that
addresses these issues end to end, which result in both quantitatively and
qualitatively accurate and robust 3D colon reconstruction. Our SLAM approach,
which employs correspondences based on contrastive deep features, and deep
consistent depth maps, estimates globally optimized poses, is able to recover
from frequent tracking failures, and estimates a global consistent 3D model;
all within a single framework. We perform an extensive experimental evaluation
on multiple synthetic and real colonoscopy videos, showing high-quality results
and comparisons against relevant baselines.
- Abstract(参考訳): 光内視鏡(OC)による3D大腸再建による非検査面の検出は未解決の問題である。
この課題は、高反射性低テクスチャー表面、劇的な照明変化、頻繁な追跡損失を特徴とする光学的大腸内視鏡データの性質から生じる。
近年の手法では,(1)フレーム・ツー・フレーム(あるいはフレーム・ツー・モデル)の予測が多くのトラッキング障害を引き起こし,(2)スキャン品質を犠牲にしてポイントベース表現に頼っている。
本稿では,これらの課題を終末まで解決し,定量的かつ定性的かつ堅牢な3次元大腸再建を実現するための新しい再構築フレームワークを提案する。
我々のSLAMアプローチは、対照的な深い特徴と深い一貫した深度マップに基づいて対応し、グローバルに最適化されたポーズを推定し、頻繁なトラッキング障害から回復し、グローバルな一貫した3Dモデルを推定できる。
人工大腸内視鏡と実大腸内視鏡の併用実験を行い,高品質な結果と関連する基準値との比較を行った。
関連論文リスト
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - ToDER: Towards Colonoscopy Depth Estimation and Reconstruction with Geometry Constraint Adaptation [67.22294293695255]
そこで本稿では,ToDERという双方向適応アーキテクチャを用いて,高精度な深度推定を行う新しいパイプラインを提案する。
以上の結果から,本手法は実写および合成大腸内視鏡ビデオの深度マップを精度良く予測できることが示唆された。
論文 参考訳(メタデータ) (2024-07-23T14:24:26Z) - EndoSparse: Real-Time Sparse View Synthesis of Endoscopic Scenes using Gaussian Splatting [39.60431471170721]
内視鏡画像からの生体組織の3次元再構成は, 様々な重要な下流外科的応用を3D機能で解き放つ鍵となる。
既存の手法では、ビュー合成に様々な高度なニューラルレンダリング技術を採用しているが、スパースな観察しかできない場合には、正確な3D表現の復元に苦慮することが多い。
再建過程において,複数の基盤モデルから事前の知識を活用するフレームワークを提案し,それをtextitEndoSparse と呼ぶ。
論文 参考訳(メタデータ) (2024-07-01T07:24:09Z) - Multi-task learning with cross-task consistency for improved depth
estimation in colonoscopy [0.2995885872626565]
我々は、共有エンコーダと2つのデコーダ、すなわち表面正規デコーダと深度推定器を備えた新しいマルチタスク学習(MTL)アプローチを開発する。
比較誤差は14.17%、$delta_1$精度は10.4%改善した。
論文 参考訳(メタデータ) (2023-11-30T16:13:17Z) - A Quantitative Evaluation of Dense 3D Reconstruction of Sinus Anatomy
from Monocular Endoscopic Video [8.32570164101507]
内視鏡的シーケンスと光学的トラッキングを用いた洞再建のための自己教師型アプローチの定量的解析を行った。
以上の結果から, 生成した復元は解剖学的に高い一致を示し, 平均点間誤差は0.91mmであった。
ポーズと深さ推定の不正確さがこの誤りに等しく寄与し、より短い軌跡を持つ局所的に一貫したシーケンスがより正確な再構成をもたらすことを確認した。
論文 参考訳(メタデータ) (2023-10-22T17:11:40Z) - OOD-CV-v2: An extended Benchmark for Robustness to Out-of-Distribution
Shifts of Individual Nuisances in Natural Images [59.51657161097337]
OOD-CV-v2は、ポーズ、形状、テクスチャ、コンテキスト、気象条件の10のオブジェクトカテゴリのアウト・オブ・ディストリビューションの例を含むベンチマークデータセットである。
この新たなデータセットに加えて、一般的なベースライン手法を用いた広範な実験にも貢献する。
論文 参考訳(メタデータ) (2023-04-17T20:39:25Z) - On Robust Cross-View Consistency in Self-Supervised Monocular Depth Estimation [56.97699793236174]
本論文では,2種類の堅牢なクロスビュー整合性について検討する。
深度特徴空間と3次元ボクセル空間の時間的コヒーレンスを自己教師付き単眼深度推定に利用した。
いくつかのアウトドアベンチマークの実験結果から,本手法は最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2022-09-19T03:46:13Z) - ColDE: A Depth Estimation Framework for Colonoscopy Reconstruction [27.793186578742088]
本研究では,大腸内視鏡データの特別な課題に対処するために,一連のトレーニング損失を設計した。
ColDEという名前の自己監督型フレームワークは、十分なトレーニング損失を伴って、大腸内視鏡データのより詳細なマップを生成することができる。
論文 参考訳(メタデータ) (2021-11-19T04:44:27Z) - Multi-view 3D Reconstruction of a Texture-less Smooth Surface of Unknown
Generic Reflectance [86.05191217004415]
表面反射率の不明なテクスチャレス物体の多視点再構成は難しい課題である。
本稿では,コライトスキャナーをベースとした,この問題に対するシンプルで堅牢な解法を提案する。
論文 参考訳(メタデータ) (2021-05-25T01:28:54Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。