iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
Noise Models
- URL: http://arxiv.org/abs/2306.17361v2
- Date: Sat, 13 Jan 2024 01:44:30 GMT
- Title: iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
Noise Models
- Authors: Tianyu Chen, Kevin Bello, Bryon Aragam, Pradeep Ravikumar
- Abstract summary: This paper focuses on identifying the causal mechanism shifts in two or more related datasets over the same set of variables.
Code implementing the proposed method is open-source and publicly available at https://github.com/kevinsbello/iSCAN.
- Score: 48.33685559041322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structural causal models (SCMs) are widely used in various disciplines to
represent causal relationships among variables in complex systems.
Unfortunately, the underlying causal structure is often unknown, and estimating
it from data remains a challenging task. In many situations, however, the end
goal is to localize the changes (shifts) in the causal mechanisms between
related datasets instead of learning the full causal structure of the
individual datasets. Some applications include root cause analysis, analyzing
gene regulatory network structure changes between healthy and cancerous
individuals, or explaining distribution shifts. This paper focuses on
identifying the causal mechanism shifts in two or more related datasets over
the same set of variables -- without estimating the entire DAG structure of
each SCM. Prior work under this setting assumed linear models with Gaussian
noises; instead, in this work we assume that each SCM belongs to the more
general class of nonlinear additive noise models (ANMs). A key technical
contribution of this work is to show that the Jacobian of the score function
for the mixture distribution allows for the identification of shifts under
general non-parametric functional mechanisms. Once the shifted variables are
identified, we leverage recent work to estimate the structural differences, if
any, for the shifted variables. Experiments on synthetic and real-world data
are provided to showcase the applicability of this approach. Code implementing
the proposed method is open-source and publicly available at
https://github.com/kevinsbello/iSCAN.
Related papers
- DeCaf: A Causal Decoupling Framework for OOD Generalization on Node Classification [14.96980804513399]
Graph Neural Networks (GNNs) are susceptible to distribution shifts, creating vulnerability and security issues in critical domains.
Existing methods that target learning an invariant (feature, structure)-label mapping often depend on oversimplified assumptions about the data generation process.
We introduce a more realistic graph data generation model using Structural Causal Models (SCMs)
We propose a casual decoupling framework, DeCaf, that independently learns unbiased feature-label and structure-label mappings.
arXiv Detail & Related papers (2024-10-27T00:22:18Z) - Standardizing Structural Causal Models [80.21199731817698]
We propose internally-standardized structural causal models (iSCMs) for benchmarking algorithms.
By construction, iSCMs are not $operatornameVar$-sortable, and as we show experimentally, not $operatornameR2$-sortable either for commonly-used graph families.
arXiv Detail & Related papers (2024-06-17T14:52:21Z) - Learning Latent Structural Causal Models [31.686049664958457]
In machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors.
We present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent Structural Causal Model.
arXiv Detail & Related papers (2022-10-24T20:09:44Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Modeling the Data-Generating Process is Necessary for Out-of-Distribution Generalization [23.302060306322506]
Real-world data often has multiple distribution shifts over different attributes.
No state-of-the-art DG algorithm performs consistently well on all shifts.
We develop Causally Adaptive Constraint Minimization (CACM), an algorithm that uses knowledge about the data-generating process to adaptively identify and apply the correct independence constraints for regularization.
arXiv Detail & Related papers (2022-06-15T22:35:06Z) - Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis [7.895866278697778]
Machine learning approaches commonly rely on the assumption of independent and identically distributed (i.i.d.) data.
In reality, this assumption is almost always violated due to distribution shifts between environments.
We propose the Mechanism Shift Score (MSS), a score-based approach amenable to various empirical estimators.
arXiv Detail & Related papers (2022-06-04T15:39:30Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
We introduce a new type of graphical model called cluster causal diagrams (for short, C-DAGs)
C-DAGs allow for the partial specification of relationships among variables based on limited prior knowledge.
We develop the foundations and machinery for valid causal inferences over C-DAGs.
arXiv Detail & Related papers (2022-02-22T21:27:31Z) - BCDAG: An R package for Bayesian structure and Causal learning of
Gaussian DAGs [77.34726150561087]
We introduce the R package for causal discovery and causal effect estimation from observational data.
Our implementation scales efficiently with the number of observations and, whenever the DAGs are sufficiently sparse, the number of variables in the dataset.
We then illustrate the main functions and algorithms on both real and simulated datasets.
arXiv Detail & Related papers (2022-01-28T09:30:32Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
We focus on the task of causal discovery form observational data.
We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure.
arXiv Detail & Related papers (2021-10-30T21:32:42Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.