Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction
- URL: http://arxiv.org/abs/2406.15904v1
- Date: Sat, 22 Jun 2024 17:43:08 GMT
- Title: Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction
- Authors: Kulunu Dharmakeerthi, YoonHaeng Hur, Tengyuan Liang,
- Abstract summary: In observational data, the distribution shift is often driven by unobserved confounding factors.
This motivates us to study the domain adaptation problem with observational data.
We show a model that uses the learned lower-dimensional subspace can incur nearly ideal gap between target and source risk.
- Score: 5.38274042816001
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Practitioners often deploy a learned prediction model in a new environment where the joint distribution of covariate and response has shifted. In observational data, the distribution shift is often driven by unobserved confounding factors lurking in the environment, with the underlying mechanism unknown. Confounding can obfuscate the definition of the best prediction model (concept shift) and shift covariates to domains yet unseen (covariate shift). Therefore, a model maximizing prediction accuracy in the source environment could suffer a significant accuracy drop in the target environment. This motivates us to study the domain adaptation problem with observational data: given labeled covariate and response pairs from a source environment, and unlabeled covariates from a target environment, how can one predict the missing target response reliably? We root the adaptation problem in a linear structural causal model to address endogeneity and unobserved confounding. We study the necessity and benefit of leveraging exogenous, invariant covariate representations to cure concept shifts and improve target prediction. This further motivates a new representation learning method for adaptation that optimizes for a lower-dimensional linear subspace and, subsequently, a prediction model confined to that subspace. The procedure operates on a non-convex objective-that naturally interpolates between predictability and stability/invariance-constrained on the Stiefel manifold. We study the optimization landscape and prove that, when the regularization is sufficient, nearly all local optima align with an invariant linear subspace resilient to both concept and covariate shift. In terms of predictability, we show a model that uses the learned lower-dimensional subspace can incur a nearly ideal gap between target and source risk. Three real-world data sets are investigated to validate our method and theory.
Related papers
- Optimal Aggregation of Prediction Intervals under Unsupervised Domain Shift [9.387706860375461]
A distribution shift occurs when the underlying data-generating process changes, leading to a deviation in the model's performance.
The prediction interval serves as a crucial tool for characterizing uncertainties induced by their underlying distribution.
We propose methodologies for aggregating prediction intervals to obtain one with minimal width and adequate coverage on the target domain.
arXiv Detail & Related papers (2024-05-16T17:55:42Z) - Collaborative Heterogeneous Causal Inference Beyond Meta-analysis [68.4474531911361]
We propose a collaborative inverse propensity score estimator for causal inference with heterogeneous data.
Our method shows significant improvements over the methods based on meta-analysis when heterogeneity increases.
arXiv Detail & Related papers (2024-04-24T09:04:36Z) - Source-Free Unsupervised Domain Adaptation with Hypothesis Consolidation
of Prediction Rationale [53.152460508207184]
Source-Free Unsupervised Domain Adaptation (SFUDA) is a challenging task where a model needs to be adapted to a new domain without access to target domain labels or source domain data.
This paper proposes a novel approach that considers multiple prediction hypotheses for each sample and investigates the rationale behind each hypothesis.
To achieve the optimal performance, we propose a three-step adaptation process: model pre-adaptation, hypothesis consolidation, and semi-supervised learning.
arXiv Detail & Related papers (2024-02-02T05:53:22Z) - Causality-oriented robustness: exploiting general additive interventions [3.871660145364189]
In this paper, we focus on causality-oriented robustness and propose Distributional Robustness via Invariant Gradients (DRIG)
In a linear setting, we prove that DRIG yields predictions that are robust among a data-dependent class of distribution shifts.
We extend our approach to the semi-supervised domain adaptation setting to further improve prediction performance.
arXiv Detail & Related papers (2023-07-18T16:22:50Z) - Prediction under Latent Subgroup Shifts with High-Dimensional
Observations [30.433078066683848]
We introduce a new approach to prediction in graphical models with latent-shift adaptation.
Our novel form of RPM identifies causal latent structure in the source environment, and adapts properly to predict in the target.
arXiv Detail & Related papers (2023-06-23T12:26:24Z) - Adapting to Latent Subgroup Shifts via Concepts and Proxies [82.01141290360562]
We show that the optimal target predictor can be non-parametrically identified with the help of concept and proxy variables available only in the source domain.
For continuous observations, we propose a latent variable model specific to the data generation process at hand.
arXiv Detail & Related papers (2022-12-21T18:30:22Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
We first establish a generalization bound that explicitly considers the adaptivity gap.
We propose effective gap estimation methods for guiding the selection of a better hypothesis for the target.
The other method is minimizing the gap directly by adapting model parameters using online target samples.
arXiv Detail & Related papers (2022-08-18T06:42:49Z) - Uncertainty-guided Source-free Domain Adaptation [77.3844160723014]
Source-free domain adaptation (SFDA) aims to adapt a classifier to an unlabelled target data set by only using a pre-trained source model.
We propose quantifying the uncertainty in the source model predictions and utilizing it to guide the target adaptation.
arXiv Detail & Related papers (2022-08-16T08:03:30Z) - Causal Discovery in Heterogeneous Environments Under the Sparse
Mechanism Shift Hypothesis [7.895866278697778]
Machine learning approaches commonly rely on the assumption of independent and identically distributed (i.i.d.) data.
In reality, this assumption is almost always violated due to distribution shifts between environments.
We propose the Mechanism Shift Score (MSS), a score-based approach amenable to various empirical estimators.
arXiv Detail & Related papers (2022-06-04T15:39:30Z) - HYPER: Learned Hybrid Trajectory Prediction via Factored Inference and
Adaptive Sampling [27.194900145235007]
We introduce HYPER, a general and expressive hybrid prediction framework.
By modeling traffic agents as a hybrid discrete-continuous system, our approach is capable of predicting discrete intent changes over time.
We train and validate our model on the Argoverse dataset, and demonstrate its effectiveness through comprehensive ablation studies and comparisons with state-of-the-art models.
arXiv Detail & Related papers (2021-10-05T20:20:10Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.