論文の概要: Actuarial Applications of Natural Language Processing Using
Transformers: Case Studies for Using Text Features in an Actuarial Context
- arxiv url: http://arxiv.org/abs/2206.02014v3
- Date: Mon, 25 Sep 2023 09:17:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 05:01:56.777532
- Title: Actuarial Applications of Natural Language Processing Using
Transformers: Case Studies for Using Text Features in an Actuarial Context
- Title(参考訳): 変圧器を用いた自然言語処理のアクタリカル応用:アクタリカルコンテキストにおけるテキスト特徴の活用を事例として
- Authors: Andreas Troxler (AT Analytics) and J\"urg Schelldorfer (Swiss Re)
- Abstract要約: このチュートリアルは、テキストデータをアクチュアリ分類と回帰タスクに組み込むことを実証する。
主な焦点はトランスフォーマーモデルを用いた手法である。
このケーススタディは、多言語設定と長い入力シーケンスに関連する課題に取り組む。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This tutorial demonstrates workflows to incorporate text data into actuarial
classification and regression tasks. The main focus is on methods employing
transformer-based models. A dataset of car accident descriptions with an
average length of 400 words, available in English and German, and a dataset
with short property insurance claims descriptions are used to demonstrate these
techniques. The case studies tackle challenges related to a multi-lingual
setting and long input sequences. They also show ways to interpret model
output, to assess and improve model performance, by fine-tuning the models to
the domain of application or to a specific prediction task. Finally, the
tutorial provides practical approaches to handle classification tasks in
situations with no or only few labeled data, including but not limited to
ChatGPT. The results achieved by using the language-understanding skills of
off-the-shelf natural language processing (NLP) models with only minimal
pre-processing and fine-tuning clearly demonstrate the power of transfer
learning for practical applications.
- Abstract(参考訳): このチュートリアルでは、テキストデータをアクチュアリ分類と回帰タスクに組み込むワークフローをデモする。
主な焦点はトランスフォーマーモデルを用いた手法である。
英語とドイツ語で利用可能な平均400ワードの自動車事故記述のデータセットと、短い不動産保険請求記述のデータセットを使用して、これらのテクニックを実証する。
ケーススタディは、多言語設定と長い入力シーケンスに関連する課題に取り組む。
彼らはまた、モデルの出力を解釈する方法を示し、モデルのドメインや特定の予測タスクに微調整することで、モデルの性能を評価し、改善する。
最後に、このチュートリアルはChatGPTに限らずラベル付きデータが少ない状況下での分類タスクを扱うための実践的なアプローチを提供する。
先行処理や微調整を最小限に抑えた自然言語処理(nlp)モデルの言語理解能力を用いて,実践的応用におけるトランスファー学習の能力を明確に示す。
関連論文リスト
- How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
本稿では, 実例と非実例を手作業で構築することなく, 挑戦的なテストセットを自動生成する手法を提案する。
一般的なNLIデータセットのテストセットを,トレーニングダイナミクスを利用した3つの難易度に分類する。
我々の評価法がトレーニングセットに適用された場合、トレーニング対象データのごく一部でトレーニングされたモデルは、フルデータセットでトレーニングされたモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-04T13:39:21Z) - Zero-shot prompt-based classification: topic labeling in times of foundation models in German Tweets [1.734165485480267]
そこで,本論文では,文章ガイドラインを用いてテキストを自動的に注釈付けするツールについて,トレーニングサンプルを提供することなく提案する。
提案手法は細調整されたBERTに匹敵するが,アノテートしたトレーニングデータはない。
本研究は,NLPランドスケープにおける進行中のパラダイムシフト,すなわち下流タスクの統一と事前ラベル付きトレーニングデータの必要性の排除を強調した。
論文 参考訳(メタデータ) (2024-06-26T10:44:02Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Pre-Training to Learn in Context [138.0745138788142]
言語モデルが文脈で学習するために明示的に訓練されていないため、コンテキスト内学習の能力は十分に活用されていない。
In-Context Learning のための PICL (Pre-training for In-Context Learning) を提案する。
実験の結果,PICLはベースラインよりも効率が高く,タスクの汎用性が高く,約4倍のパラメータを持つ言語モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-05-16T03:38:06Z) - Annotated Dataset Creation through General Purpose Language Models for
non-English Medical NLP [0.5482532589225552]
我々の研究では、事前訓練された言語モデルをデータ取得のトレーニングに活用することを提案する。
我々は、ドイツのテキストであるGPTNERMEDの医療用NERモデルをトレーニングするために使用するカスタムデータセットを作成します。
論文 参考訳(メタデータ) (2022-08-30T18:42:55Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
生成音声言語モデル(GSLM)に基づく音声処理タスクの即時チューニングパラダイムの最初の検討について報告する。
実験結果から, 学習可能なパラメータが少ない音声分類タスクにおいて, 高精度なダウンストリームモデルよりも, 即時チューニング手法が競合性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-31T03:26:55Z) - Grad2Task: Improved Few-shot Text Classification Using Gradients for
Task Representation [24.488427641442694]
本稿では,数ショットのテキスト分類のための条件付きニューラルプロセスに基づく新しいアプローチを提案する。
私たちのキーとなるアイデアは、ベースモデルからの勾配情報を使って各タスクを表現することです。
我々のアプローチは、従来の微調整、シーケンシャルトランスファーラーニング、そして最先端のメタラーニングアプローチよりも優れています。
論文 参考訳(メタデータ) (2022-01-27T15:29:30Z) - Skill Induction and Planning with Latent Language [94.55783888325165]
我々は、ゴールがハイレベルなサブタスク記述のシーケンスを生成するアクションシーケンスの生成モデルを定式化する。
本稿では、このモデルを、主に注釈のないデモを用いて、名前付きハイレベルなサブタスクのシーケンスに解析する方法について述べる。
訓練されたモデルでは、自然言語コマンドの空間はスキルのライブラリを索引付けする;エージェントはこれらのスキルを使って、新しい目標に適した高いレベルの命令シーケンスを生成する。
論文 参考訳(メタデータ) (2021-10-04T15:36:32Z) - AStitchInLanguageModels: Dataset and Methods for the Exploration of
Idiomaticity in Pre-Trained Language Models [7.386862225828819]
本研究は、MWEを含む自然発生文のデータセットを、細かな意味の集合に手作業で分類する。
我々は,このデータセットを,idiomを含む文の表現生成における言語モデルの有効性と,idiomを用いた言語モデルの有効性を検証するために,2つのタスクで使用する。
論文 参考訳(メタデータ) (2021-09-09T16:53:17Z) - Fine-tuning BERT for Low-Resource Natural Language Understanding via
Active Learning [30.5853328612593]
本研究では,事前学習した Transformer ベースの言語モデル BERT の微調整手法について検討する。
実験結果から,モデルの知識獲得度を最大化することで,モデル性能の優位性を示す。
我々は、微調整中の言語モデルの凍結層の利点を分析し、トレーニング可能なパラメータの数を減らす。
論文 参考訳(メタデータ) (2020-12-04T08:34:39Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。