論文の概要: Zero-shot prompt-based classification: topic labeling in times of foundation models in German Tweets
- arxiv url: http://arxiv.org/abs/2406.18239v1
- Date: Wed, 26 Jun 2024 10:44:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 13:49:09.620299
- Title: Zero-shot prompt-based classification: topic labeling in times of foundation models in German Tweets
- Title(参考訳): ゼロショットプロンプトに基づく分類:ドイツのつぶやきの基盤モデルにおけるトピックラベリング
- Authors: Simon Münker, Kai Kugler, Achim Rettinger,
- Abstract要約: そこで,本論文では,文章ガイドラインを用いてテキストを自動的に注釈付けするツールについて,トレーニングサンプルを提供することなく提案する。
提案手法は細調整されたBERTに匹敵するが,アノテートしたトレーニングデータはない。
本研究は,NLPランドスケープにおける進行中のパラダイムシフト,すなわち下流タスクの統一と事前ラベル付きトレーニングデータの必要性の排除を強調した。
- 参考スコア(独自算出の注目度): 1.734165485480267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Filtering and annotating textual data are routine tasks in many areas, like social media or news analytics. Automating these tasks allows to scale the analyses wrt. speed and breadth of content covered and decreases the manual effort required. Due to technical advancements in Natural Language Processing, specifically the success of large foundation models, a new tool for automating such annotation processes by using a text-to-text interface given written guidelines without providing training samples has become available. In this work, we assess these advancements in-the-wild by empirically testing them in an annotation task on German Twitter data about social and political European crises. We compare the prompt-based results with our human annotation and preceding classification approaches, including Naive Bayes and a BERT-based fine-tuning/domain adaptation pipeline. Our results show that the prompt-based approach - despite being limited by local computation resources during the model selection - is comparable with the fine-tuned BERT but without any annotated training data. Our findings emphasize the ongoing paradigm shift in the NLP landscape, i.e., the unification of downstream tasks and elimination of the need for pre-labeled training data.
- Abstract(参考訳): テキストデータのフィルタリングと注釈付けは、ソーシャルメディアやニュース分析など、多くの分野で日常的なタスクである。
これらのタスクの自動化は、分析をwrtにスケールすることができる。
スピードとコンテンツの幅がカバーされ 手作業の労力が減ります
自然言語処理の技術的進歩、特に大規模な基盤モデルの成功により、トレーニングサンプルを提供することなく、記述されたガイドラインをテキスト・トゥ・テキスト・インタフェースで自動化する新たなツールが利用可能になった。
本研究では、ドイツにおける社会と政治の危機に関するTwitterデータに対するアノテーションタスクを経験的にテストすることで、これらの進歩を評価する。
提案手法は,ヒトのアノテーションと従来の分類手法,例えばNie BayesやBERTベースの微調整/ドメイン適応パイプラインとを比較した。
提案手法は,モデル選択時に局所的な計算資源に制限されているにもかかわらず,注釈付きトレーニングデータを持たない細調整BERTと同等であることを示す。
本研究は,NLPランドスケープにおける進行中のパラダイムシフト,すなわち下流タスクの統一と事前ラベル付きトレーニングデータの必要性の排除を強調した。
関連論文リスト
- Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
遠隔教師付きラベルに分類器のトレーニング力学に基づいて重みを割り当てる新しいコトレーニング手法を提案する。
予測された信頼度に対する任意のしきい値に基づいてサンプルをフィルタリングするのではなく、重要重みを割り当てることにより、自動ラベル付きデータの使用を最大化する。
提案手法は、遠隔監視ベースラインに対するマクロF1の1.5%の改善と、他の強力なSSLベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-06-20T18:35:47Z) - MetricPrompt: Prompting Model as a Relevance Metric for Few-shot Text
Classification [65.51149771074944]
MetricPromptは、数発のテキスト分類タスクをテキストペア関連性推定タスクに書き換えることで、言語設計の難易度を緩和する。
広範に使われている3つのテキスト分類データセットを4つのショット・セッティングで実験する。
結果から,MetricPromptは,手動弁証法や自動弁証法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2023-06-15T06:51:35Z) - Curriculum-Based Self-Training Makes Better Few-Shot Learners for
Data-to-Text Generation [56.98033565736974]
テキスト生成の困難さによって決定される並べ替え順序でラベルのないデータを活用するために,カリキュラムベースの自己学習(CBST)を提案する。
提案手法は、微調整およびタスク適応型事前学習法より優れており、データ・テキスト・ジェネレーションのわずかな設定で最先端の性能を実現することができる。
論文 参考訳(メタデータ) (2022-06-06T16:11:58Z) - Actuarial Applications of Natural Language Processing Using
Transformers: Case Studies for Using Text Features in an Actuarial Context [0.0]
このチュートリアルは、テキストデータをアクチュアリ分類と回帰タスクに組み込むことを実証する。
主な焦点はトランスフォーマーモデルを用いた手法である。
このケーススタディは、多言語設定と長い入力シーケンスに関連する課題に取り組む。
論文 参考訳(メタデータ) (2022-06-04T15:39:30Z) - A Semi-Supervised Deep Clustering Pipeline for Mining Intentions From
Texts [6.599344783327053]
Verint Manager Intent(VIM)は、教師なしおよび半教師なしのアプローチを組み合わせた分析プラットフォームで、アナリストが会話テキストから関連するユーザの意図を素早く分析し整理するのに役立つ。
データの最初の探索には、ハイパフォーマンスな言語モデルの微調整を統合する、教師なしで半教師なしのパイプラインを使用します。
BERTはタスクデータの0.5%のラベル付きサブセットを使用して、より優れたタスク認識表現を生成する。
論文 参考訳(メタデータ) (2022-02-01T23:01:05Z) - Learning To Retrieve Prompts for In-Context Learning [33.176481861880724]
本稿では,注釈付きデータとLMを用いたテキスト内学習のためのプロンプトを効率よく検索する手法を提案する。
言語発話を意味表現にマッピングする3つのシーケンス・ツー・シーケンスタスクに対するアプローチを評価する。
論文 参考訳(メタデータ) (2021-12-16T05:17:56Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - Robust Document Representations using Latent Topics and Metadata [17.306088038339336]
本稿では,文書分類問題に対する事前学習型ニューラルネットワークモデルの微調整手法を提案する。
テキストとメタデータの両方をタスク形式でキャプチャする文書表現を生成します。
私たちのソリューションでは、メタデータを単にテキストで拡張するのではなく、明示的に組み込んでいます。
論文 参考訳(メタデータ) (2020-10-23T21:52:38Z) - Self-training Improves Pre-training for Natural Language Understanding [63.78927366363178]
我々は、半教師付き学習を通じてラベルのないデータを活用する別の方法として、自己学習について研究する。
本稿では,ラベル付きデータからタスク固有のクエリの埋め込みを計算するデータ拡張手法であるSentAugmentを紹介する。
我々のアプローチは、標準的なテキスト分類ベンチマークで最大2.6%の改善を達成し、スケーラブルで効果的な自己学習に繋がる。
論文 参考訳(メタデータ) (2020-10-05T17:52:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。