論文の概要: Which models are innately best at uncertainty estimation?
- arxiv url: http://arxiv.org/abs/2206.02152v1
- Date: Sun, 5 Jun 2022 11:15:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-11 07:52:19.928475
- Title: Which models are innately best at uncertainty estimation?
- Title(参考訳): どのモデルが本質的に不確実性推定に最適か?
- Authors: Ido Galil, Mohammed Dabbah, Ran El-Yaniv
- Abstract要約: ディープニューラルネットワークは、リスクに敏感なタスクにデプロイされる場合、不確実性推定機構を備える必要がある。
本稿では,深層建築とその訓練体制との関係について,その選択予測と不確実性推定性能について検討する。
- 参考スコア(独自算出の注目度): 15.929238800072195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks must be equipped with an uncertainty estimation
mechanism when deployed for risk-sensitive tasks. This paper studies the
relationship between deep architectures and their training regimes with their
corresponding selective prediction and uncertainty estimation performance. We
consider both in-distribution uncertainties and class-out-of-distribution ones.
Moreover, we consider some of the most popular estimation performance metrics
previously proposed including AUROC, ECE, AURC, and coverage for selective
accuracy constraint. We present a novel and comprehensive study of selective
prediction and the uncertainty estimation performance of 484 existing
pretrained deep ImageNet classifiers that are available at popular
repositories. We identify numerous and previously unknown factors that affect
uncertainty estimation and examine the relationships between the different
metrics. We find that distillation-based training regimes consistently yield
better uncertainty estimations than other training schemes such as vanilla
training, pretraining on a larger dataset and adversarial training. We also
provide strong empirical evidence showing that ViT is by far the most superior
architecture in terms of uncertainty estimation performance, judging by any
aspect, in both in-distribution and class-out-of-distribution scenarios.
- Abstract(参考訳): ディープニューラルネットワークは、リスクに敏感なタスクにデプロイする場合、不確実性推定機構を備える必要がある。
本稿では,ディープアーキテクチャとトレーニングレジームの関係と,その選択予測と不確実性推定性能について検討する。
分配不確実性と分配不確実性の両方を考慮する。
さらに、AUROC、ECE、AURC、選択精度制約のカバレッジなど、これまで提案された最も一般的な推定性能指標について考察する。
本稿では,一般リポジトリで使用可能な484個の既存訓練済みディープイメージネット分類器の選択的予測と不確実性推定性能に関する新規かつ総合的な研究を行う。
我々は,不確実性推定に影響を及ぼす未知の要因を多数同定し,各指標間の関係を考察した。
蒸留法に基づくトレーニング体制は,バニラトレーニングやデータセットの事前トレーニング,敵のトレーニングなど,他のトレーニング手法よりも不確実性を常に評価している。
また,vitが不確実性評価性能の面では,分布内とクラス外の両方において,最も優れたアーキテクチャであることを示す強い実証的証拠を提供する。
関連論文リスト
- Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent
Representations [28.875819909902244]
不確実性推定は、訓練されたディープニューラルネットワークの信頼性を評価することを目的としている。
既存の不確実性推定アプローチは、低次元分布仮定に依存している。
本研究では,不確実性推定のためのデータ適応型高次元仮説テストを用いた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-25T12:22:18Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
不確実性推定は、ディープラーニングを実用アプリケーションで信頼できるものにする鍵となる要素である。
漁業情報に基づくエビデンシャルディープラーニング(mathcalI$-EDL)を提案する。
特に,各サンプルが有する証拠の情報量を測定するためにFisher Information Matrix (FIM)を導入し,目的的損失項を動的に重み付けし,不確実なクラスの表現学習に集中させる。
論文 参考訳(メタデータ) (2023-03-03T16:12:59Z) - What Can We Learn From The Selective Prediction And Uncertainty
Estimation Performance Of 523 Imagenet Classifiers [15.929238800072195]
本稿では,既存の523の事前学習深層画像ネット分類器の選択的予測と不確実性評価性能について述べる。
蒸留法に基づくトレーニング体制は、他のトレーニング方式よりも常により良い不確実性推定を導出することを発見した。
例えば、ImageNetでは前例のない99%のトップ1選択精度を47%で発見しました。
論文 参考訳(メタデータ) (2023-02-23T09:25:28Z) - Fast Uncertainty Estimates in Deep Learning Interatomic Potentials [0.0]
本研究では,単一ニューラルネットワークを用いて,アンサンブルを必要とせずに予測不確実性を推定する手法を提案する。
本研究では,不確実性の推定値の品質が深層アンサンブルから得られた値と一致することを示す。
論文 参考訳(メタデータ) (2022-11-17T20:13:39Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - Evaluation of Machine Learning Techniques for Forecast Uncertainty
Quantification [0.13999481573773068]
アンサンブル予測は、これまでのところ、関連する予測を生成するための最も成功したアプローチであり、その不確実性を見積もっている。
アンサンブル予測の主な制限は、高い計算コストと異なる不確実性の源を捕捉し定量化することの難しさである。
本研究は,1つの決定論的予測のみを入力として,システムの修正状態と状態不確かさを予測するために訓練されたANNの性能を評価するための概念モデル実験である。
論文 参考訳(メタデータ) (2021-11-29T16:52:17Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
Learning [70.72363097550483]
本研究では,画像分類における領域内不確実性に着目した。
そこで本研究では,ディープアンサンブル等価スコア(DEE)を導入する。
論文 参考訳(メタデータ) (2020-02-15T23:28:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。