論文の概要: Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
- arxiv url: http://arxiv.org/abs/2211.09866v1
- Date: Thu, 17 Nov 2022 20:13:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 16:04:44.546533
- Title: Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
- Title(参考訳): ディープラーニング原子間ポテンシャルの高速不確かさ推定
- Authors: Albert Zhu, Simon Batzner, Albert Musaelian, Boris Kozinsky
- Abstract要約: 本研究では,単一ニューラルネットワークを用いて,アンサンブルを必要とせずに予測不確実性を推定する手法を提案する。
本研究では,不確実性の推定値の品質が深層アンサンブルから得られた値と一致することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has emerged as a promising paradigm to give access to highly
accurate predictions of molecular and materials properties. A common
short-coming shared by current approaches, however, is that neural networks
only give point estimates of their predictions and do not come with predictive
uncertainties associated with these estimates. Existing uncertainty
quantification efforts have primarily leveraged the standard deviation of
predictions across an ensemble of independently trained neural networks. This
incurs a large computational overhead in both training and prediction that
often results in order-of-magnitude more expensive predictions. Here, we
propose a method to estimate the predictive uncertainty based on a single
neural network without the need for an ensemble. This allows us to obtain
uncertainty estimates with virtually no additional computational overhead over
standard training and inference. We demonstrate that the quality of the
uncertainty estimates matches those obtained from deep ensembles. We further
examine the uncertainty estimates of our methods and deep ensembles across the
configuration space of our test system and compare the uncertainties to the
potential energy surface. Finally, we study the efficacy of the method in an
active learning setting and find the results to match an ensemble-based
strategy at order-of-magnitude reduced computational cost.
- Abstract(参考訳): ディープラーニングは、分子特性や材料特性の高精度な予測にアクセスできるための、有望なパラダイムとして登場した。
しかし、現在のアプローチで共有されている共通の欠点は、ニューラルネットワークが予測のポイント推定のみを付与し、これらの推定に関連付けられた予測の不確実性は生じないことである。
既存の不確実性定量化の取り組みは、主に独立に訓練されたニューラルネットワークのアンサンブルにおける予測の標準偏差を利用した。
これは、トレーニングと予測の両方において大きな計算上のオーバーヘッドをもたらし、しばしば、桁違いに高価な予測をもたらす。
本稿では,単一ニューラルネットワークを用いて,アンサンブルを必要とせずに予測不確実性を推定する手法を提案する。
これにより、標準的なトレーニングや推論よりも計算上のオーバーヘッドがほとんどない不確実性推定が得られる。
深いアンサンブルから得られたものと不確実性推定の質が一致することを示す。
さらに,本実験システムの構成空間を横断する手法と深層アンサンブルの不確実性評価を行い,その不確かさをポテンシャルエネルギー面と比較した。
最後に,本手法の有効性を能動的学習環境において検討し,計算コスト低減のためのアンサンブル戦略に適合する結果を見出した。
関連論文リスト
- Evidential Deep Learning: Enhancing Predictive Uncertainty Estimation
for Earth System Science Applications [0.32302664881848275]
エビデンシャル・ディープ・ラーニング(Evidential Deep Learning)は、パラメトリック・ディープ・ラーニングを高次分布に拡張する手法である。
本研究では,明らかなニューラルネットワークから得られる不確実性とアンサンブルから得られる不確実性を比較する。
本研究では,従来の手法に匹敵する予測精度を実現するとともに,両方の不確実性源をしっかりと定量化しながら,明らかな深層学習モデルを示す。
論文 参考訳(メタデータ) (2023-09-22T23:04:51Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Learning Uncertainty with Artificial Neural Networks for Improved
Predictive Process Monitoring [0.114219428942199]
学習可能な不確実性には、トレーニングデータ不足によるモデル不確実性と、ノイズによる観察不確実性がある。
我々の貢献は、これらの不確実性の概念を予測プロセス監視タスクに適用し、不確実性に基づくモデルをトレーニングし、残りの時間と結果を予測することである。
論文 参考訳(メタデータ) (2022-06-13T17:05:27Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
不確実性を考慮した回帰ベースニューラルネットワーク(NN)による新しいアプローチは、従来の決定論的手法や典型的なベイズ的NNよりも有望であることを示している。
我々は、理論的欠点を詳述し、合成および実世界のデータセットのパフォーマンスを分析し、Deep Evidential Regressionが正確な不確実性ではなく定量化であることを示す。
論文 参考訳(メタデータ) (2022-05-20T10:10:32Z) - Training Uncertainty-Aware Classifiers with Conformalized Deep Learning [7.837881800517111]
ディープニューラルネットワークは、データ内の隠れパターンを検出し、それらを活用して予測する強力なツールであるが、不確実性を理解するように設計されていない。
我々は予測力を犠牲にすることなく、より信頼性の高い不確実性推定を導出できる新しいトレーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-05-12T05:08:10Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
本稿では,ニューラルネットワークと不確実性推定手法について検討し,正確な決定論的予測と確実性推定の両方を実現する。
本研究では,アンサンブルに基づく手法と生成モデルに基づく手法の2つの不確実性推定法について検討し,それらの長所と短所を,完全/半端/弱度に制御されたフレームワークを用いて説明する。
論文 参考訳(メタデータ) (2021-10-13T01:23:48Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
本稿では,正規格子法とグラフ法という2種類の予測問題について述べる。
我々はベイジアンおよび頻繁な視点からUQ法を解析し、統計的決定理論を通じて統一的な枠組みを提示する。
実際の道路ネットワークのトラフィック、疫病、空気質予測タスクに関する広範な実験を通じて、異なるUQ手法の統計計算トレードオフを明らかにする。
論文 参考訳(メタデータ) (2021-05-25T14:35:46Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - The Benefit of the Doubt: Uncertainty Aware Sensing for Edge Computing
Platforms [10.86298377998459]
組込みエッジシステム上に展開されたNNにおける予測不確実性推定のための効率的なフレームワークを提案する。
フレームワークは1つのフォワードパスのみに基づいて予測の不確実性を提供するために、ゼロから構築されている。
提案手法は, 堅牢かつ正確な不確実性推定だけでなく, システム性能の点で最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-02-11T11:44:32Z) - Depth Uncertainty in Neural Networks [2.6763498831034043]
ディープラーニングにおける不確実性を推定する既存の方法は、複数の前方パスを必要とする傾向がある。
フィードフォワードネットワークのシーケンシャルな構造を利用することで、トレーニング目標を評価し、単一のフォワードパスで予測を行うことができる。
実世界の回帰と画像分類タスクに対する我々のアプローチを検証する。
論文 参考訳(メタデータ) (2020-06-15T14:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。