MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification
- URL: http://arxiv.org/abs/2307.11875v1
- Date: Fri, 21 Jul 2023 19:33:10 GMT
- Title: MORE: Measurement and Correlation Based Variational Quantum Circuit for
Multi-classification
- Authors: Jindi Wu, Tianjie Hu, Qun Li
- Abstract summary: MORE stands for measurement and correlation based variational quantum multi-classifier.
We implement MORE using the Qiskit Python library and evaluate it through extensive experiments on both noise-free and noisy quantum systems.
- Score: 10.969833959443495
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing has shown considerable promise for compute-intensive tasks
in recent years. For instance, classification tasks based on quantum neural
networks (QNN) have garnered significant interest from researchers and have
been evaluated in various scenarios. However, the majority of quantum
classifiers are currently limited to binary classification tasks due to either
constrained quantum computing resources or the need for intensive classical
post-processing. In this paper, we propose an efficient quantum
multi-classifier called MORE, which stands for measurement and correlation
based variational quantum multi-classifier. MORE adopts the same variational
ansatz as binary classifiers while performing multi-classification by fully
utilizing the quantum information of a single readout qubit. To extract the
complete information from the readout qubit, we select three observables that
form the basis of a two-dimensional Hilbert space. We then use the quantum
state tomography technique to reconstruct the readout state from the
measurement results. Afterward, we explore the correlation between classes to
determine the quantum labels for classes using the variational quantum
clustering approach. Next, quantum label-based supervised learning is performed
to identify the mapping between the input data and their corresponding quantum
labels. Finally, the predicted label is determined by its closest quantum label
when using the classifier. We implement this approach using the Qiskit Python
library and evaluate it through extensive experiments on both noise-free and
noisy quantum systems. Our evaluation results demonstrate that MORE, despite
using a simple ansatz and limited quantum resources, achieves advanced
performance.
Related papers
- Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - A hybrid quantum-classical classifier based on branching multi-scale
entanglement renormalization ansatz [5.548873288570182]
This paper proposes a quantum semi-supervised classifier based on label propagation.
Considering the difficulty of graph construction, we develop a variational quantum label propagation (VQLP) method.
In this method, a locally parameterized quantum circuit is created to reduce the parameters required in the optimization.
arXiv Detail & Related papers (2023-03-14T13:46:45Z) - Variational Quantum Eigensolver for Classification in Credit Sales Risk [0.5524804393257919]
We take into consideration a quantum circuit which is based on the Variational Quantum Eigensolver (VQE) and so-called SWAP-Test.
In the utilized data set, two classes may be observed -- cases with low and high credit risk.
The solution is compact and requires only logarithmically increasing number of qubits.
arXiv Detail & Related papers (2023-03-05T23:08:39Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Multi-class quantum classifiers with tensor network circuits for quantum
phase recognition [0.0]
Network-inspired circuits have been proposed as a natural choice for variational quantum eigensolver circuits.
We present numerical experiments on multi-class entanglements based on tree tensor network and multiscale renormalization ansatz circuits.
arXiv Detail & Related papers (2021-10-15T21:55:13Z) - Recent advances for quantum classifiers [2.459525036555352]
We will review a number of quantum classification algorithms, including quantum support vector machine, quantum kernel methods, quantum decision tree, and quantum nearest neighbor algorithm.
We will then introduce the variational quantum classifiers, which are essentially variational quantum circuits for classifications.
arXiv Detail & Related papers (2021-08-30T18:00:00Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - VSQL: Variational Shadow Quantum Learning for Classification [6.90132007891849]
We propose a new hybrid quantum-classical framework for supervised quantum learning, which we call Variational Shadow Quantum Learning.
We first use variational shadow quantum circuits to extract classical features in a convolution way and then utilize a fully-connected neural network to complete the classification task.
We show that this method could sharply reduce the number of parameters and thus better facilitate quantum circuit training.
arXiv Detail & Related papers (2020-12-15T13:51:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.