A Machine Learning Framework to Deconstruct the Primary Drivers for
Electricity Market Price Events
- URL: http://arxiv.org/abs/2309.06082v1
- Date: Tue, 12 Sep 2023 09:24:21 GMT
- Title: A Machine Learning Framework to Deconstruct the Primary Drivers for
Electricity Market Price Events
- Authors: Milan Jain, Xueqing Sun, Sohom Datta and Abhishek Somani
- Abstract summary: Power grids are moving towards 100% renewable energy source bulk power grids.
Traditional root cause analysis and statistical approaches are rendered inapplicable to analyze and infer the main drivers behind price formation.
We propose a machine learning-based analysis framework to deconstruct the primary drivers for price spike events in modern electricity markets with high renewable energy.
- Score: 0.8192907805418581
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Power grids are moving towards 100% renewable energy source bulk power grids,
and the overall dynamics of power system operations and electricity markets are
changing. The electricity markets are not only dispatching resources
economically but also taking into account various controllable actions like
renewable curtailment, transmission congestion mitigation, and energy storage
optimization to ensure grid reliability. As a result, price formations in
electricity markets have become quite complex. Traditional root cause analysis
and statistical approaches are rendered inapplicable to analyze and infer the
main drivers behind price formation in the modern grid and markets with
variable renewable energy (VRE). In this paper, we propose a machine
learning-based analysis framework to deconstruct the primary drivers for price
spike events in modern electricity markets with high renewable energy. The
outcomes can be utilized for various critical aspects of market design,
renewable dispatch and curtailment, operations, and cyber-security
applications. The framework can be applied to any ISO or market data; however,
in this paper, it is applied to open-source publicly available datasets from
California Independent System Operator (CAISO) and ISO New England (ISO-NE).
Related papers
- A Physics-Informed Machine Learning for Electricity Markets: A NYISO
Case Study [1.1580136767197162]
PIMA-AS-OPF is a fully-connected neural network that takes the net load and the system topology as input.
The outputs of this neural network include active constraints such as saturated generators and transmission lines, as well as non-zero load shedding and wind curtailments.
The dispatch decisions and LMPs are then tested for their feasibility with respect to the requirements for efficient market-clearing results.
arXiv Detail & Related papers (2023-03-31T18:25:03Z) - Understanding electricity prices beyond the merit order principle using
explainable AI [0.0]
In perfect competition, the merit order principle describes that dispatchable power plants enter the market in the order of their marginal costs.
Many market models implement this principle to predict electricity prices but typically require certain assumptions and simplifications.
We present an explainable machine learning model for the prices on the German day-ahead market, which substantially outperforms a benchmark model.
arXiv Detail & Related papers (2022-12-09T12:18:17Z) - Distributed Energy Management and Demand Response in Smart Grids: A
Multi-Agent Deep Reinforcement Learning Framework [53.97223237572147]
This paper presents a multi-agent Deep Reinforcement Learning (DRL) framework for autonomous control and integration of renewable energy resources into smart power grid systems.
In particular, the proposed framework jointly considers demand response (DR) and distributed energy management (DEM) for residential end-users.
arXiv Detail & Related papers (2022-11-29T01:18:58Z) - Machine learning applications for electricity market agent-based models:
A systematic literature review [68.8204255655161]
Agent-based simulations are used to better understand the dynamics of the electricity market.
Agent-based models provide the opportunity to integrate machine learning and artificial intelligence.
We review 55 papers published between 2016 and 2021 which focus on machine learning applied to agent-based electricity market models.
arXiv Detail & Related papers (2022-06-05T14:52:26Z) - Virtual Microgrid Management via Software-defined Energy Network for
Electricity Sharing [10.13696311830345]
This article proposes an approach to build a virtual microgrid operated as a software-defined energy network (SDEN)
The proposed cyber-physical system presumes that electrical energy is shared among its members and that the energy sharing is enabled in the cyber domain by handshakes inspired by resource allocation methods utilized in computer networks, wireless communications, and peer-to-peer Internet applications (e.g., BitTorrent)
This article concludes that the proposed solution generally complies with the existing regulations but has highly disruptive potential to organize a dominantly electrified energy system in the mid- to long-term.
arXiv Detail & Related papers (2021-02-01T06:09:40Z) - Exploring market power using deep reinforcement learning for intelligent
bidding strategies [69.3939291118954]
We find that capacity has an impact on the average electricity price in a single year.
The value of $sim$25% and $sim$11% may vary between market structures and countries.
We observe that the use of a market cap of approximately double the average market price has the effect of significantly decreasing this effect and maintaining a competitive market.
arXiv Detail & Related papers (2020-11-08T21:07:42Z) - A Multi-Agent Deep Reinforcement Learning Approach for a Distributed
Energy Marketplace in Smart Grids [58.666456917115056]
This paper presents a Reinforcement Learning based energy market for a prosumer dominated microgrid.
The proposed market model facilitates a real-time and demanddependent dynamic pricing environment, which reduces grid costs and improves the economic benefits for prosumers.
arXiv Detail & Related papers (2020-09-23T02:17:51Z) - From Data to Knowledge to Action: Enabling the Smart Grid [0.11726720776908521]
"The Grid" is a relic based in many respects on century-old technology.
Many people are pinning their hopes on the "smart grid"
Initial plans for the smart grid suggest it will make extensive use of existing information technology.
arXiv Detail & Related papers (2020-07-31T19:43:48Z) - A Deep Reinforcement Learning Framework for Continuous Intraday Market
Bidding [69.37299910149981]
A key component for the successful renewable energy sources integration is the usage of energy storage.
We propose a novel modelling framework for the strategic participation of energy storage in the European continuous intraday market.
An distributed version of the fitted Q algorithm is chosen for solving this problem due to its sample efficiency.
Results indicate that the agent converges to a policy that achieves in average higher total revenues than the benchmark strategy.
arXiv Detail & Related papers (2020-04-13T13:50:13Z) - Towards a Peer-to-Peer Energy Market: an Overview [68.8204255655161]
This work focuses on the electric power market, comparing the status quo with the recent trend towards the increase in distributed self-generation capabilities by prosumers.
We introduce a potential multi-layered architecture for a Peer-to-Peer (P2P) energy market, discussing the fundamental aspects of local production and local consumption as part of a microgrid.
To give a full picture to the reader, we also scrutinise relevant elements of energy trading, such as Smart Contract and grid stability.
arXiv Detail & Related papers (2020-03-02T20:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.