Quantum erasing the memory of Wigner's friend
- URL: http://arxiv.org/abs/2009.09905v4
- Date: Tue, 29 Jun 2021 07:21:37 GMT
- Title: Quantum erasing the memory of Wigner's friend
- Authors: Cyril Elouard, Philippe Lewalle, Sreenath K. Manikandan, Spencer
Rogers, Adam Frank, Andrew N. Jordan
- Abstract summary: Wigner's friend paradox concerns one of the most puzzling problems of quantum mechanics.
At the core of the paradox lies the description of an observer and the object it measures as a closed system obeying the Schr"odinger equation.
We argue that the three apparently incompatible properties used to question the consistency of quantum mechanics correspond to two logically distinct contexts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Wigner's friend paradox concerns one of the most puzzling problems of
quantum mechanics: the consistent description of multiple nested observers.
Recently, a variation of Wigner's gedankenexperiment, introduced by Frauchiger
and Renner, has lead to new debates about the self-consistency of quantum
mechanics. At the core of the paradox lies the description of an observer and
the object it measures as a closed system obeying the Schr\"odinger equation.
We revisit this assumption to derive a necessary condition on a quantum system
to behave as an observer. We then propose a simple single-photon
interferometric setup implementing Frauchiger and Renner's scenario, and use
the derived condition to shed a new light on the assumptions leading to their
paradox. From our description, we argue that the three apparently incompatible
properties used to question the consistency of quantum mechanics correspond to
two logically distinct contexts: either one assumes that Wigner has full
control over his friends' lab, or conversely that some parts of the labs remain
unaffected by Wigner's subsequent measurements. The first context may be seen
as the quantum erasure of the memory of Wigner's friend. We further show these
properties are associated with observables which do not commute, and therefore
cannot take well-defined values simultaneously. Consequently, the three
contradictory properties never hold simultaneously.
Related papers
- Thinking twice inside the box: is Wigner's friend really quantum? [0.0]
We argue that the gist of the Wigner's friend paradox can be reproduced without assuming quantum physics.
We show that several recently proposed extended Wigner's friend scenarios can be reproduced by classical thought experiments.
We argue that this difficulty is at the core of other puzzles in the foundations of physics and philosophy.
arXiv Detail & Related papers (2024-02-13T19:00:13Z) - Logic meets Wigner's Friend (and their Friends) [49.1574468325115]
We take a fresh look at Wigner's Friend thought-experiment and some of its more recent variants and extensions.
We discuss various solutions proposed in the literature, focusing on a few questions.
arXiv Detail & Related papers (2023-07-04T13:31:56Z) - Exploring the boundary of quantum correlations with a time-domain
optical processor [16.003717185276052]
We propose and observe a strong form of contextuality in high Hilbert-space dimensions.
Our results pave the way for the exploration of exotic quantum correlations with time-multiplexed optical systems.
arXiv Detail & Related papers (2022-08-16T15:12:42Z) - Certified Quantumness via Single-Shot Temporal Measurements [0.0]
Bell-Kochen-Specker theorem states that a non-contextual hidden- variable theory cannot reproduce predictions of quantum mechanics.
Asher Peres gave a simple proof of quantum contextuality in a four-dimensional Hilbert space of two spin-1/2 particles.
We present a similar proof in time with a temporal version of the Peres-like argument.
arXiv Detail & Related papers (2022-06-06T12:42:32Z) - Events in quantum mechanics are maximally non-absolute [0.9176056742068814]
We prove that quantum correlations can be maximally non-absolute according to both quantifiers.
We show that chained Bell inequalities (and relaxations thereof) are also valid constraints for Wigner's experiment.
arXiv Detail & Related papers (2021-12-19T21:15:16Z) - Consistency in the description of quantum measurement: Quantum theory
can consistently describe the use of itself [8.122270502556372]
I propose a slight addition to standard textbook quantum mechanics, in the form of two rules, which avoids the paradox.
The first specifies when a given quantum dynamics can be interpreted as a measurement.
The second requires that a joint context be used to determine whether several different dynamical evolutions can all be interpreted as measurement.
arXiv Detail & Related papers (2021-07-05T18:00:15Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Observers of quantum systems cannot agree to disagree [55.41644538483948]
We ask whether agreement between observers can serve as a physical principle that must hold for any theory of the world.
We construct examples of (postquantum) no-signaling boxes where observers can agree to disagree.
arXiv Detail & Related papers (2021-02-17T19:00:04Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z) - A strong no-go theorem on the Wigner's friend paradox [0.0]
We prove that if quantum evolution is controllable on the scale of an observer, then one of 'No-Superdeterminism', 'Locality' or 'Absoluteness of Observed Events' must be false.
We show that although the violation of Bell-type inequalities in such scenarios is not in general sufficient to demonstrate the contradiction between those three assumptions, new inequalities can be derived in a theory-independent manner.
arXiv Detail & Related papers (2019-07-12T08:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.