論文の概要: Predicting and Understanding Human Action Decisions during Skillful
Joint-Action via Machine Learning and Explainable-AI
- arxiv url: http://arxiv.org/abs/2206.02739v1
- Date: Mon, 6 Jun 2022 16:54:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-07 16:10:26.214820
- Title: Predicting and Understanding Human Action Decisions during Skillful
Joint-Action via Machine Learning and Explainable-AI
- Title(参考訳): 機械学習と説明可能aiによる巧妙な共同行動中の人間の行動決定の予測と理解
- Authors: Fabrizia Auletta, Rachel W. Kallen, Mario di Bernardo, Micheal J.
Richardson
- Abstract要約: 本研究では、教師付き機械学習と説明可能な人工知能を用いて、人間の意思決定をモデル化し、予測し、理解する。
長期記憶ネットワークは、専門家と初心者アクターのターゲット選択決定を予測するために訓練された。
- 参考スコア(独自算出の注目度): 1.3381749415517021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study uses supervised machine learning (SML) and explainable artificial
intelligence (AI) to model, predict and understand human decision-making during
skillful joint-action. Long short-term memory networks were trained to predict
the target selection decisions of expert and novice actors completing a dyadic
herding task. Results revealed that the trained models were expertise specific
and could not only accurately predict the target selection decisions of expert
and novice herders but could do so at timescales that preceded an actor's
conscious intent. To understand what differentiated the target selection
decisions of expert and novice actors, we then employed the explainable-AI
technique, SHapley Additive exPlanation, to identify the importance of
informational features (variables) on model predictions. This analysis revealed
that experts were more influenced by information about the state of their
co-herders compared to novices. The utility of employing SML and explainable-AI
techniques for investigating human decision-making is discussed.
- Abstract(参考訳): 本研究では、教師付き機械学習(SML)と説明可能な人工知能(AI)を用いて、熟練した共同行動中の人間の意思決定をモデル化し、予測し、理解する。
dyadic herdingタスクを完了させるエキスパートおよび初心者アクターのターゲット選択決定を予測するために、長期の短期記憶ネットワークを訓練した。
その結果、訓練されたモデルは専門的であり、専門家と初心者のヘルダーのターゲット選択決定を正確に予測するだけでなく、俳優の意識的な意図に先立って時間スケールで予測できることが判明した。
そこで我々は,モデル予測における情報特徴(変数)の重要性を明らかにするために,専門家と初心者のターゲット選択決定との違いを理解するために,説明可能なAI手法であるSHapley Additive exPlanationを用いた。
この分析により、専門家は初心者よりも共同ヘルダーの状態に関する情報に強い影響を受けていることが明らかとなった。
人的意思決定におけるSMLと説明可能なAI技術の有用性について論じる。
関連論文リスト
- Explain To Decide: A Human-Centric Review on the Role of Explainable
Artificial Intelligence in AI-assisted Decision Making [1.0878040851638]
機械学習モデルはエラーを起こしやすく、自律的に使用することはできない。
説明可能な人工知能(XAI)は、エンドユーザーによるモデルの理解を支援する。
本稿では,XAIの人間-AI意思決定への影響に関する最近の実証的研究について報告する。
論文 参考訳(メタデータ) (2023-12-11T22:35:21Z) - Training Towards Critical Use: Learning to Situate AI Predictions
Relative to Human Knowledge [22.21959942886099]
我々は、人間がAIモデルでは利用できない知識に対してAI予測をシチュレートする能力を集中させる「クリティカルユース」と呼ばれるプロセス指向の適切な依存の概念を紹介します。
我々は、児童虐待スクリーニングという複雑な社会的意思決定環境でランダム化オンライン実験を行う。
参加者にAIによる意思決定を実践する、迅速で低い機会を提供することによって、初心者は、経験豊富な労働者に類似したAIとの不一致のパターンを示すようになった。
論文 参考訳(メタデータ) (2023-08-30T01:54:31Z) - From DDMs to DNNs: Using process data and models of decision-making to
improve human-AI interactions [1.1510009152620668]
人工知能(AI)の研究は、意思決定が時間とともにどのように現れるかについての洞察に強い焦点をあてることから恩恵を受けるだろう、と私たちは主張する。
まず,ノイズの蓄積による決定を前提とした,高度に確立された計算フレームワークを提案する。
次に、マルチエージェントAIにおける現在のアプローチが、プロセスデータや意思決定のモデルをどの程度取り入れているかについて議論する。
論文 参考訳(メタデータ) (2023-08-29T11:27:22Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - On the Fairness of Machine-Assisted Human Decisions [3.4069627091757178]
偏りのある人間の意思決定者を含めることで、アルゴリズムの構造と結果の判断の質との間の共通関係を逆転させることができることを示す。
実験室実験では,性別別情報による予測が,意思決定における平均的な性別格差を減少させることを示す。
論文 参考訳(メタデータ) (2021-10-28T17:24:45Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - When Does Uncertainty Matter?: Understanding the Impact of Predictive
Uncertainty in ML Assisted Decision Making [68.19284302320146]
我々は,異なるレベルの専門知識を持つ人々が,異なるタイプの予測不確実性にどう反応するかを評価するために,ユーザスタディを実施している。
その結果,後続の予測分布を示すことは,MLモデルの予測との相違点が小さくなることがわかった。
このことは、後続の予測分布は、人間の分布の種類や専門性を考慮し、注意を払って使用するべき有用な決定支援として役立つ可能性があることを示唆している。
論文 参考訳(メタデータ) (2020-11-12T02:23:53Z) - Local Post-Hoc Explanations for Predictive Process Monitoring in
Manufacturing [0.0]
本研究では,製造におけるデータ駆動型意思決定を容易にするための,革新的な予測品質分析ソリューションを提案する。
プロセスマイニング、機械学習、説明可能な人工知能(XAI)メソッドを組み合わせる。
論文 参考訳(メタデータ) (2020-09-22T13:07:17Z) - Explainable Active Learning (XAL): An Empirical Study of How Local
Explanations Impact Annotator Experience [76.9910678786031]
本稿では、最近急増している説明可能なAI(XAI)のテクニックをアクティブラーニング環境に導入することにより、説明可能なアクティブラーニング(XAL)の新たなパラダイムを提案する。
本研究は,機械教育のインタフェースとしてのAI説明の利点として,信頼度校正を支援し,リッチな形式の教示フィードバックを可能にすること,モデル判断と認知作業負荷による潜在的な欠点を克服する効果を示す。
論文 参考訳(メタデータ) (2020-01-24T22:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。