論文の概要: Local Post-Hoc Explanations for Predictive Process Monitoring in
Manufacturing
- arxiv url: http://arxiv.org/abs/2009.10513v2
- Date: Thu, 10 Jun 2021 08:58:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-15 21:22:24.454847
- Title: Local Post-Hoc Explanations for Predictive Process Monitoring in
Manufacturing
- Title(参考訳): 生産における予測プロセスモニタリングのための局所的ポストホック説明
- Authors: Nijat Mehdiyev and Peter Fettke
- Abstract要約: 本研究では,製造におけるデータ駆動型意思決定を容易にするための,革新的な予測品質分析ソリューションを提案する。
プロセスマイニング、機械学習、説明可能な人工知能(XAI)メソッドを組み合わせる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study proposes an innovative explainable predictive quality analytics
solution to facilitate data-driven decision-making for process planning in
manufacturing by combining process mining, machine learning, and explainable
artificial intelligence (XAI) methods. For this purpose, after integrating the
top-floor and shop-floor data obtained from various enterprise information
systems, a deep learning model was applied to predict the process outcomes.
Since this study aims to operationalize the delivered predictive insights by
embedding them into decision-making processes, it is essential to generate
relevant explanations for domain experts. To this end, two complementary local
post-hoc explanation approaches, Shapley values and Individual Conditional
Expectation (ICE) plots are adopted, which are expected to enhance the
decision-making capabilities by enabling experts to examine explanations from
different perspectives. After assessing the predictive strength of the applied
deep neural network with relevant binary classification evaluation measures, a
discussion of the generated explanations is provided.
- Abstract(参考訳): 本研究では, プロセスマイニング, 機械学習, 説明可能な人工知能(XAI)手法を組み合わせることで, 製造工程計画のためのデータ駆動型意思決定を容易にする, 革新的な説明可能な品質分析ソリューションを提案する。
この目的のために,様々な企業情報システムから得られたトップフロアデータとショップフロアデータを統合することにより,プロセス結果の予測に深層学習モデルを適用した。
本研究は、意思決定プロセスに組み込むことで、提供された予測的洞察を運用することを目的としているため、ドメインエキスパートに適切な説明を生成することが不可欠である。
この目的のために、専門家が異なる視点から説明を検証できるようにすることで意思決定能力を高めることが期待される2つの補完的な局所的ポストホック説明手法であるシェープリー値と個別条件予測(ICE)プロットが採用されている。
応用深層ニューラルネットワークの予測強度を関連する2値分類評価尺度で評価した後、生成された説明について考察する。
関連論文リスト
- Generating Feasible and Plausible Counterfactual Explanations for Outcome Prediction of Business Processes [45.502284864662585]
データ駆動型アプローチであるREVISEDplusを導入し、妥当な対実的説明を生成する。
まず, プロセスデータの高密度領域内に存在する反ファクトデータを生成するために, 反ファクトアルゴリズムを限定する。
また、プロセスケースにおけるアクティビティ間のシーケンシャルなパターンを学習することで、妥当性を保証します。
論文 参考訳(メタデータ) (2024-03-14T09:56:35Z) - Explaining Explainability: Towards Deeper Actionable Insights into Deep
Learning through Second-order Explainability [70.60433013657693]
2階説明可能なAI(SOXAI)は、最近インスタンスレベルからデータセットレベルまで説明可能なAI(XAI)を拡張するために提案されている。
そこで本研究では,SOXAIの動作可能な洞察に基づくトレーニングセットから無関係な概念を除外することで,モデルの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2023-06-14T23:24:01Z) - Quantifying and Explaining Machine Learning Uncertainty in Predictive
Process Monitoring: An Operations Research Perspective [0.0]
本稿では,情報システムと人工知能を統合した総合的多段階機械学習手法を提案する。
提案したフレームワークは、データ駆動推定の無視など、既存のソリューションの共通的な制限を十分に解決する。
本手法では,Shapley Additive Explanationsの局所的およびグローバル的変異とともに,時間間隔予測を生成するために,Quantile Regression Forestsを用いている。
論文 参考訳(メタデータ) (2023-04-13T11:18:22Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
データ駆動最適化では、コンテキスト情報と機械学習アルゴリズムを使用して、不確実なパラメータによる決定問題の解決策を見つける。
本稿では,データ駆動型問題に対する解法を説明するために,対実的説明手法を提案する。
在庫管理やルーティングといった運用管理における重要な問題を説明することで,我々のアプローチを実証する。
論文 参考訳(メタデータ) (2023-01-24T15:25:16Z) - Predicting and Understanding Human Action Decisions during Skillful
Joint-Action via Machine Learning and Explainable-AI [1.3381749415517021]
本研究では、教師付き機械学習と説明可能な人工知能を用いて、人間の意思決定をモデル化し、予測し、理解する。
長期記憶ネットワークは、専門家と初心者アクターのターゲット選択決定を予測するために訓練された。
論文 参考訳(メタデータ) (2022-06-06T16:54:43Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
本稿では、プロセス結果予測の分野における説明可能性モデルと説明可能性モデルの忠実性を通して、説明可能性を定義する。
本稿では,イベントログの仕様に基づいて適切なモデルを選択することのできる,X-MOPというガイドラインのセットを提案する。
論文 参考訳(メタデータ) (2022-03-30T05:59:50Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Explainable AI Enabled Inspection of Business Process Prediction Models [2.5229940062544496]
本稿では,モデル説明を用いて,機械学習の予測によって適用された推論を解析する手法を提案する。
本手法の新たな貢献は,解釈可能な機械学習機構によって生成された説明と,過去のプロセス実行を記録するイベントログから抽出された文脈的,あるいはドメイン的知識の両方を活用するモデル検査の提案である。
論文 参考訳(メタデータ) (2021-07-16T06:51:18Z) - Forethought and Hindsight in Credit Assignment [62.05690959741223]
我々は、前向きモデルや後向きモデルによる後向き操作による予測として使われる計画の利益と特異性を理解するために活動する。
本稿では,予測を(再)評価すべき状態の選択に主眼を置いて,計画におけるモデルの利用について検討する。
論文 参考訳(メタデータ) (2020-10-26T16:00:47Z) - Explainable Artificial Intelligence for Process Mining: A General
Overview and Application of a Novel Local Explanation Approach for Predictive
Process Monitoring [0.0]
本研究では,意思決定環境の確立と理解促進を目的とした概念的枠組みを提案する。
本研究では、中間潜在空間表現を用いて、検証データセットから局所領域を定義する。
採用したディープラーニング分類器は、ROC曲線0.94のエリアで良好な性能を発揮する。
論文 参考訳(メタデータ) (2020-09-04T10:28:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。