論文の概要: Efficient entity-based reinforcement learning
- arxiv url: http://arxiv.org/abs/2206.02855v1
- Date: Mon, 6 Jun 2022 19:02:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-09 08:50:07.017756
- Title: Efficient entity-based reinforcement learning
- Title(参考訳): 効率的なエンティティベース強化学習
- Authors: Vince Jankovics, Michael Garcia Ortiz, Eduardo Alonso
- Abstract要約: 本稿では,集合表現の最近の進歩とスロットアテンションとグラフニューラルネットワークを組み合わせて構造化データを処理することを提案する。
トレーニング時間とロバスト性を大幅に改善できることを示し、構造化されたドメインと純粋に視覚的なドメインを扱う可能性を示す。
- 参考スコア(独自算出の注目度): 3.867363075280544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent deep reinforcement learning (DRL) successes rely on end-to-end
learning from fixed-size observational inputs (e.g. image, state-variables).
However, many challenging and interesting problems in decision making involve
observations or intermediary representations which are best described as a set
of entities: either the image-based approach would miss small but important
details in the observations (e.g. ojects on a radar, vehicles on satellite
images, etc.), the number of sensed objects is not fixed (e.g. robotic
manipulation), or the problem simply cannot be represented in a meaningful way
as an image (e.g. power grid control, or logistics).
This type of structured representations is not directly compatible with
current DRL architectures, however, there has been an increase in machine
learning techniques directly targeting structured information, potentially
addressing this issue.
We propose to combine recent advances in set representations with slot
attention and graph neural networks to process structured data, broadening the
range of applications of DRL algorithms. This approach allows to address
entity-based problems in an efficient and scalable way. We show that it can
improve training time and robustness significantly, and demonstrate their
potential to handle structured as well as purely visual domains, on multiple
environments from the Atari Learning Environment and Simple Playgrounds.
- Abstract(参考訳): 近年の深層強化学習(DRL)の成功は、固定サイズの観測入力(画像、状態変数など)からエンドツーエンドの学習に依存している。
However, many challenging and interesting problems in decision making involve observations or intermediary representations which are best described as a set of entities: either the image-based approach would miss small but important details in the observations (e.g. ojects on a radar, vehicles on satellite images, etc.), the number of sensed objects is not fixed (e.g. robotic manipulation), or the problem simply cannot be represented in a meaningful way as an image (e.g. power grid control, or logistics).
このタイプの構造化表現は、現在のDRLアーキテクチャと直接互換性がないが、構造化情報を直接ターゲットとする機械学習技術が増加しており、この問題に対処する可能性がある。
DRLアルゴリズムの応用範囲を拡大し,近年の集合表現とスロットアテンションとグラフニューラルネットワークを組み合わせた構造化データ処理を提案する。
このアプローチは、効率良くスケーラブルな方法でエンティティベースの問題に対処することができる。
Atari Learning EnvironmentとSimple Playgroundsの複数の環境において、トレーニング時間と堅牢性を大幅に向上させ、構造化されたドメインと純粋に視覚的なドメインを扱う可能性を示す。
関連論文リスト
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
トランスフォーマーベースのモデルは、自己認識機構を活用することにより、先進的なポイントクラウド理解を持つ。
PointACLは、これらの制限に対処するために設計された、注意駆動のコントラスト学習フレームワークである。
本手法では, 注意駆動型動的マスキング手法を用いて, モデルが非集中領域に集中するように誘導する。
論文 参考訳(メタデータ) (2024-11-22T05:41:00Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Representation Learning in Deep RL via Discrete Information Bottleneck [39.375822469572434]
本研究では,タスク非関連情報の存在下で,潜在状態を効率的に構築するために,情報のボトルネックを利用する方法について検討する。
本稿では,RepDIBとよばれる変動的および離散的な情報のボトルネックを利用して,構造化された因子化表現を学習するアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-12-28T14:38:12Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
遠隔センシング領域における自己教師付き学習は、容易に利用可能なラベル付きデータを活用するために応用されている。
本稿では,ラベル効率のレンズを用いた自己教師型視覚表現学習について検討する。
論文 参考訳(メタデータ) (2022-10-13T06:54:13Z) - Bridging the Gap to Real-World Object-Centric Learning [66.55867830853803]
自己教師付き方法で訓練されたモデルから特徴を再構成することは、完全に教師なしの方法でオブジェクト中心表現が生じるための十分な訓練信号であることを示す。
我々のアプローチであるDINOSAURは、シミュレーションデータ上で既存のオブジェクト中心学習モデルよりも大幅に優れています。
論文 参考訳(メタデータ) (2022-09-29T15:24:47Z) - SR-GNN: Spatial Relation-aware Graph Neural Network for Fine-Grained
Image Categorization [24.286426387100423]
本稿では,最も関連性の高い画像領域からコンテキスト認識機能を集約することで,微妙な変化を捉える手法を提案する。
我々のアプローチは、近年の自己注意とグラフニューラルネットワーク(GNN)の発展にインスパイアされている。
これは、認識精度のかなりの差で最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2022-09-05T19:43:15Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Exploring Data Aggregation and Transformations to Generalize across
Visual Domains [0.0]
この論文は、ドメイン一般化(DG)、ドメイン適応(DA)およびそれらのバリエーションの研究に寄与する。
本稿では,機能集約戦略と視覚変換を利用するドメイン一般化とドメイン適応の新しいフレームワークを提案する。
提案手法が確立したDGおよびDAベンチマークにおいて,最先端の競争的アプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-20T14:58:14Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - Laplacian Denoising Autoencoder [114.21219514831343]
本稿では,新しいタイプの自動符号化器を用いてデータ表現を学習することを提案する。
勾配領域における潜伏クリーンデータを破損させて雑音入力データを生成する。
いくつかのビジュアルベンチマークの実験では、提案されたアプローチでより良い表現が学べることが示されている。
論文 参考訳(メタデータ) (2020-03-30T16:52:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。