論文の概要: Relaxed Gaussian process interpolation: a goal-oriented approach to
Bayesian optimization
- arxiv url: http://arxiv.org/abs/2206.03034v1
- Date: Tue, 7 Jun 2022 06:26:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-08 16:02:42.209229
- Title: Relaxed Gaussian process interpolation: a goal-oriented approach to
Bayesian optimization
- Title(参考訳): 緩和されたガウス過程補間:ベイズ最適化への目標指向アプローチ
- Authors: S\'ebastien Petit (GdR MASCOT-NUM), Julien Bect (GdR MASCOT-NUM, L2S),
Emmanuel Vazquez (GdR MASCOT-NUM, L2S)
- Abstract要約: 本研究では,ガウス過程(GP)モデリングの文脈で予測分布を求める新しい手法を提案する。
緩和ガウス過程(reGP)と呼ばれる手法は、興味の範囲でより良い予測分布を提供する。
これはゴール指向の方法と見なすことができ、ベイズ最適化において特に興味深いものとなる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a new procedure for obtaining predictive distributions in
the context of Gaussian process (GP) modeling, with a relaxation of the
interpolation constraints outside some ranges of interest: the mean of the
predictive distributions no longer necessarily interpolates the observed values
when they are outside ranges of interest, but are simply constrained to remain
outside. This method called relaxed Gaussian process (reGP) interpolation
provides better predictive distributions in ranges of interest, especially in
cases where a stationarity assumption for the GP model is not appropriate. It
can be viewed as a goal-oriented method and becomes particularly interesting in
Bayesian optimization, for example, for the minimization of an objective
function, where good predictive distributions for low function values are
important. When the expected improvement criterion and reGP are used for
sequentially choosing evaluation points, the convergence of the resulting
optimization algorithm is theoretically guaranteed (provided that the function
to be optimized lies in the reproducing kernel Hilbert spaces attached to the
known covariance of the underlying Gaussian process). Experiments indicate that
using reGP instead of stationary GP models in Bayesian optimization is
beneficial.
- Abstract(参考訳): この研究は、ガウス過程(GP)モデリング(英語版)の文脈における予測分布を得るための新しい手順を示し、ある関心領域外における補間制約を緩和する。
緩和ガウス過程(reGP)補間と呼ばれるこの方法は、特にGPモデルの定常性仮定が適切でない場合において、興味の範囲におけるより良い予測分布を提供する。
目的指向の手法と見なすことができ、例えば低関数値に対する優れた予測分布が重要である目的関数の最小化など、ベイズ最適化において特に興味深いものとなる。
評価点を順次選択するために期待改善基準とregpを用いると、結果として得られる最適化アルゴリズムの収束は理論的に保証される(最適化される関数は、基礎となるガウス過程の既知の共分散に付随する再生核ヒルベルト空間にある)。
実験により、ベイズ最適化において定常GPモデルの代わりにreGPを使うことが有益であることが示されている。
関連論文リスト
- Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
線形化ラプラス近似(LLA)はベイズニューラルネットワークの構築に有効で効率的であることが示されている。
ベイズ最適化におけるLLAの有用性について検討し,その性能と柔軟性を強調した。
論文 参考訳(メタデータ) (2023-04-17T14:23:43Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
本稿では、時間差学習(TD)による政策評価の世代的視点について考察する。
OS-GPTDアプローチは、状態-逆ペアのシーケンスを観測することにより、与えられたポリシーの値関数を推定するために開発された。
1つの固定カーネルに関連する限られた表現性を緩和するために、GP前の重み付けアンサンブル(E)を用いて代替のスキームを生成する。
論文 参考訳(メタデータ) (2021-12-01T23:15:09Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Preferential Bayesian optimisation with Skew Gaussian Processes [0.225596179391365]
選好関数の真の後続分布はスキューガウス過程(SkewGP)であることを示す。
我々は、正確なSkiwGP後部を計算し、標準取得関数を用いたPBOの代理モデルとして利用する効率的な手法を導出する。
また、我々のフレームワークは、混合優先カテゴリーBOを扱うように拡張可能であることも示している。
論文 参考訳(メタデータ) (2020-08-15T08:23:17Z) - Likelihood-Free Inference with Deep Gaussian Processes [70.74203794847344]
サーロゲートモデルは、シミュレータ評価の回数を減らすために、可能性のない推論に成功している。
本稿では,より不規則な対象分布を扱えるディープガウス過程(DGP)サロゲートモデルを提案する。
本実験は,DGPがマルチモーダル分布を持つ目的関数上でGPよりも優れ,単調な場合と同等の性能を維持できることを示す。
論文 参考訳(メタデータ) (2020-06-18T14:24:05Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z) - Uncertainty Quantification for Bayesian Optimization [12.433600693422235]
目的関数の最大点(あるいは値)の信頼領域を構築することにより、ベイズ最適化アルゴリズムの出力不確実性を評価する新しい手法を提案する。
我々の理論は、既存のシーケンシャルサンプリングポリシーと停止基準に対する統一的な不確実性定量化フレームワークを提供する。
論文 参考訳(メタデータ) (2020-02-04T22:48:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。