論文の概要: Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration
- arxiv url: http://arxiv.org/abs/2401.17037v2
- Date: Wed, 17 Jul 2024 10:42:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 22:48:58.201069
- Title: Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration
- Title(参考訳): ランダム探索による最適化と後近似のためのガウス過程サロゲートの強化
- Authors: Hwanwoo Kim, Daniel Sanz-Alonso,
- Abstract要約: ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
- 参考スコア(独自算出の注目度): 2.984929040246293
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes novel noise-free Bayesian optimization strategies that rely on a random exploration step to enhance the accuracy of Gaussian process surrogate models. The new algorithms retain the ease of implementation of the classical GP-UCB algorithm, but the additional random exploration step accelerates their convergence, nearly achieving the optimal convergence rate. Furthermore, to facilitate Bayesian inference with an intractable likelihood, we propose to utilize optimization iterates for maximum a posteriori estimation to build a Gaussian process surrogate model for the unnormalized log-posterior density. We provide bounds for the Hellinger distance between the true and the approximate posterior distributions in terms of the number of design points. We demonstrate the effectiveness of our Bayesian optimization algorithms in non-convex benchmark objective functions, in a machine learning hyperparameter tuning problem, and in a black-box engineering design problem. The effectiveness of our posterior approximation approach is demonstrated in two Bayesian inference problems for parameters of dynamical systems.
- Abstract(参考訳): 本稿では,ガウス過程サロゲートモデルの精度を高めるために,ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化手法を提案する。
新しいアルゴリズムは、古典的なGP-UCBアルゴリズムの実装の容易さを保っているが、追加のランダム探索ステップは、その収束を加速し、最適収束率をほぼ達成する。
さらに, ベイズ推定の難易度を高めるために, 非正規化対数後続密度に対するガウス過程代理モデルを構築するために, 最大後続推定に最適化繰り返しを利用する方法を提案する。
我々は、設計点数の観点から、真と近似後部分布の間のヘルリンガー距離のバウンダリを提供する。
我々は,非凸ベンチマーク対象関数,機械学習ハイパーパラメータチューニング問題,ブラックボックスエンジニアリング設計問題においてベイズ最適化アルゴリズムの有効性を示す。
力学系のパラメータに対する2つのベイズ推論問題において, 後部近似法の有効性を実証した。
関連論文リスト
- An Adaptive Dimension Reduction Estimation Method for High-dimensional
Bayesian Optimization [6.79843988450982]
BOを高次元設定に拡張するための2段階最適化フレームワークを提案する。
私たちのアルゴリズムは、これらのステップを並列またはシーケンスで操作する柔軟性を提供します。
数値実験により,困難シナリオにおける本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-03-08T16:21:08Z) - Improving sample efficiency of high dimensional Bayesian optimization
with MCMC [7.241485121318798]
本稿ではマルコフ・チェイン・モンテカルロに基づく新しい手法を提案する。
提案アルゴリズムのMetropolis-HastingsとLangevin Dynamicsの両バージョンは、高次元逐次最適化および強化学習ベンチマークにおいて最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2024-01-05T05:56:42Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Extrinsic Bayesian Optimizations on Manifolds [1.3477333339913569]
オイクリッド多様体上の一般最適化問題に対する外部ベイズ最適化(eBO)フレームワークを提案する。
我々のアプローチは、まず多様体を高次元空間に埋め込むことによって、外部ガウス過程を採用することである。
これにより、複素多様体上の最適化のための効率的でスケーラブルなアルゴリズムが導かれる。
論文 参考訳(メタデータ) (2022-12-21T06:10:12Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
MACE(Multi-objective Acquisition Function Ensemble)を用いた並列化可能なベイズ最適化アルゴリズムを提案する。
提案アルゴリズムは,バッチサイズが15のときの非制約最適化問題に対する微分進化(DE)と比較して,シミュレーション全体の時間を最大74倍削減することができる。
制約付き最適化問題に対して,提案アルゴリズムは,バッチサイズが15の場合に,重み付き改善に基づくベイズ最適化(WEIBO)アプローチと比較して最大15倍の高速化を実現することができる。
論文 参考訳(メタデータ) (2021-06-28T13:21:28Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - Adaptive Sampling of Pareto Frontiers with Binary Constraints Using
Regression and Classification [0.0]
本稿では,二項制約を持つブラックボックス多目的最適化問題に対する適応最適化アルゴリズムを提案する。
本手法は確率的回帰モデルと分類モデルに基づいており,最適化目標のサロゲートとして機能する。
また,予想される超体積計算を高速化するために,新しい楕円形トランケーション法を提案する。
論文 参考訳(メタデータ) (2020-08-27T09:15:02Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。