Mapping quantum circuits to shallow-depth measurement patterns based on
graph states
- URL: http://arxiv.org/abs/2311.16223v1
- Date: Mon, 27 Nov 2023 19:00:00 GMT
- Title: Mapping quantum circuits to shallow-depth measurement patterns based on
graph states
- Authors: Thierry Nicolas Kaldenbach and Matthias Heller
- Abstract summary: We create a hybrid simulation technique for measurement-based quantum computing.
We show that groups of fully commuting operators can be implemented using fully-parallel, i.e., non-adaptive, measurements.
We discuss how such circuits can be implemented in constant quantum depths by employing quantum teleportation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paradigm of measurement-based quantum computing (MBQC) starts from a
highly entangled resource state on which unitary operations are executed
through adaptive measurements and corrections ensuring determinism. This is set
in contrast to the more common quantum circuit model, in which unitary
operations are directly implemented through quantum gates prior to final
measurements. In this work, we incorporate concepts from MBQC into the circuit
model to create a hybrid simulation technique, permitting us to split any
quantum circuit into a classically efficiently simulatable Clifford-part and a
second part consisting of a stabilizer state and local (adaptive) measurement
instructions, a so-called standard form, which is executed on a quantum
computer. We further process the stabilizer state with the graph state
formalism, thus enabling a significant decrease in circuit depth for certain
applications. We show that groups of fully commuting operators can be
implemented using fully-parallel, i.e., non-adaptive, measurements within our
protocol. In addition, we discuss how such circuits can be implemented in
constant quantum depths by employing quantum teleportation. Finally, we
demonstrate the utility of our technique on two examples of high practical
relevance: the Quantum Approximate Optimization Algorithm (QAOA) and the
Variational Quantum Eigensolver (VQE).
Related papers
- Scalable quantum dynamics compilation via quantum machine learning [7.31922231703204]
variational quantum compilation (VQC) methods employ variational optimization to reduce gate costs while maintaining high accuracy.
We show that our approach exceeds state-of-the-art compilation results in both system size and accuracy in one dimension ($1$D)
For the first time, we extend VQC to systems on two-dimensional (2D) strips with a quasi-1D treatment, demonstrating a significant resource advantage over standard Trotterization methods.
arXiv Detail & Related papers (2024-09-24T18:00:00Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Universal measurement-based quantum computation in a one-dimensional architecture enabled by dual-unitary circuits [0.0]
We show that applying a dual-unitary circuit to a many-body state followed by appropriate measurements effectively implements quantum computation in the spatial direction.
Our protocol allows generic quantum circuits to be rotated' in space-time and gives new ways to exchange between resources like qubit number and coherence time in quantum computers.
arXiv Detail & Related papers (2022-09-13T17:46:15Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - An Amplitude-Based Implementation of the Unit Step Function on a Quantum
Computer [0.0]
We introduce an amplitude-based implementation for approximating non-linearity in the form of the unit step function on a quantum computer.
We describe two distinct circuit types which receive their input either directly from a classical computer, or as a quantum state when embedded in a more advanced quantum algorithm.
arXiv Detail & Related papers (2022-06-07T07:14:12Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.