Flexible Group Fairness Metrics for Survival Analysis
- URL: http://arxiv.org/abs/2206.03256v3
- Date: Fri, 22 Jul 2022 13:37:16 GMT
- Title: Flexible Group Fairness Metrics for Survival Analysis
- Authors: Raphael Sonabend, Florian Pfisterer, Alan Mishler, Moritz Schauer,
Lukas Burk, Sumantrak Mukherjee, Sebastian Vollmer
- Abstract summary: We explore how to utilise existing survival metrics to measure bias with group fairness metrics.
We find that measures of discrimination are able to capture bias well whereas there is less clarity with measures of calibration and scoring rules.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Algorithmic fairness is an increasingly important field concerned with
detecting and mitigating biases in machine learning models. There has been a
wealth of literature for algorithmic fairness in regression and classification
however there has been little exploration of the field for survival analysis.
Survival analysis is the prediction task in which one attempts to predict the
probability of an event occurring over time. Survival predictions are
particularly important in sensitive settings such as when utilising machine
learning for diagnosis and prognosis of patients. In this paper we explore how
to utilise existing survival metrics to measure bias with group fairness
metrics. We explore this in an empirical experiment with 29 survival datasets
and 8 measures. We find that measures of discrimination are able to capture
bias well whereas there is less clarity with measures of calibration and
scoring rules. We suggest further areas for research including prediction-based
fairness metrics for distribution predictions.
Related papers
- SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
Sepsis is the leading cause of in-hospital mortality in the USA.
Existing predictive models are usually trained on high-quality data with few missing information.
For the potential high-risk patients with low confidence due to limited observations, we propose a robust active sensing algorithm.
arXiv Detail & Related papers (2024-07-24T04:47:36Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Interpretable Survival Analysis for Heart Failure Risk Prediction [50.64739292687567]
We propose a novel survival analysis pipeline that is both interpretable and competitive with state-of-the-art survival models.
Our pipeline achieves state-of-the-art performance and provides interesting and novel insights about risk factors for heart failure.
arXiv Detail & Related papers (2023-10-24T02:56:05Z) - Contrastive Learning of Temporal Distinctiveness for Survival Analysis
in Electronic Health Records [10.192973297290136]
We propose a novel Ontology-aware Temporality-based Contrastive Survival (OTCSurv) analysis framework.
OTCSurv uses survival durations from both censored and observed data to define temporal distinctiveness.
We conduct experiments using a large EHR dataset to forecast the risk of hospitalized patients who are in danger of developing acute kidney injury (AKI)
arXiv Detail & Related papers (2023-08-24T22:36:22Z) - Interpretable machine learning for time-to-event prediction in medicine and healthcare [7.416913210816592]
We introduce time-dependent feature effects and global feature importance explanations.
We show how post-hoc interpretation methods allow for finding biases in AI systems predicting length of stay.
We evaluate cancer survival models beyond predictive performance to include the importance of multi-omics feature groups.
arXiv Detail & Related papers (2023-03-17T07:53:18Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Evaluation of survival distribution predictions with discrimination
measures [0.0]
We consider how to evaluate survival distribution predictions with measures of discrimination.
We find that the method for doing so is rarely described in the literature and often leads to unfair comparisons.
We recommend that machine learning survival analysis software implements clear transformations between distribution and risk predictions.
arXiv Detail & Related papers (2021-12-09T10:52:36Z) - A Statistical Test for Probabilistic Fairness [11.95891442664266]
We propose a statistical hypothesis test for detecting unfair classifiers.
We show both theoretically as well as empirically that the proposed test is correct.
In addition, the proposed framework offers interpretability by identifying the most favorable perturbation of the data.
arXiv Detail & Related papers (2020-12-09T00:20:02Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Survival Cluster Analysis [93.50540270973927]
There is an unmet need in survival analysis for identifying subpopulations with distinct risk profiles.
An approach that addresses this need is likely to improve characterization of individual outcomes.
arXiv Detail & Related papers (2020-02-29T22:41:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.