論文の概要: NeMF: Neural Motion Fields for Kinematic Animation
- arxiv url: http://arxiv.org/abs/2206.03287v1
- Date: Sat, 4 Jun 2022 05:53:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-12 12:14:49.386589
- Title: NeMF: Neural Motion Fields for Kinematic Animation
- Title(参考訳): NeMF:キネマティックアニメーションのための神経運動場
- Authors: Chengan He, Jun Saito, James Zachary, Holly Rushmeier, Yi Zhou
- Abstract要約: 巨大な運動空間を時間とともに連続関数として表現するため、Neural Motion Fields (NeMF) と呼ぶ。
我々はニューラルネットワークを用いて、この関数をさまざまな動きの集合として学習する。
私たちは、その汎用性を証明するために、多様な人間の動きデータセットと四重組データセットでモデルをトレーニングします。
- 参考スコア(独自算出の注目度): 6.570955948572252
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present an implicit neural representation to learn the spatio-temporal
space of kinematic motions. Unlike previous work that represents motion as
discrete sequential samples, we propose to express the vast motion space as a
continuous function over time, hence the name Neural Motion Fields (NeMF).
Specifically, we use a neural network to learn this function for miscellaneous
sets of motions, which is designed to be a generative model conditioned on a
temporal coordinate $t$ and a random vector $z$ for controlling the style. The
model is then trained as a Variational Autoencoder (VAE) with motion encoders
to sample the latent space. We train our model with diverse human motion
dataset and quadruped dataset to prove its versatility, and finally deploy it
as a generic motion prior to solve task-agnostic problems and show its
superiority in different motion generation and editing applications, such as
motion interpolation, in-betweening, and re-navigating.
- Abstract(参考訳): 運動の時空間空間を学習するために暗黙的な神経表現を提示する。
動きを離散的な逐次的なサンプルとして表現する以前の研究とは異なり、時間とともに連続的な関数として巨大な動き空間を表現することを提案する。
具体的には、ニューラルネットワークを用いて、時間座標 $t$ とランダムベクトル $z$ で条件付けられた生成モデルとして設計された、様々な動きのセットでこの関数を学習する。
その後、モデルが変動オートエンコーダ(VAE)としてトレーニングされ、動きエンコーダが潜伏空間をサンプリングする。
我々は,その汎用性を証明するために,多種多様な人間の動作データセットと四重組データセットを用いてモデルをトレーニングし,最終的にタスク非依存の問題を解決する前に汎用的な動作として展開し,動作補間,相互接続,再ナビゲートなどの異なる動作生成および編集アプリケーションにおいてその優位性を示す。
関連論文リスト
- Degrees of Freedom Matter: Inferring Dynamics from Point Trajectories [28.701879490459675]
ニューラルネットワークによってパラメータ化された暗黙の運動場を学習し、同一領域内の新規点の動きを予測することを目的とする。
我々は、SIRENが提供する固有正則化を活用し、入力層を変更して時間的に滑らかな運動場を生成する。
実験では, 未知点軌道の予測におけるモデルの性能評価と, 変形を伴う時間メッシュアライメントへの応用について検討した。
論文 参考訳(メタデータ) (2024-06-05T21:02:10Z) - MotionCrafter: One-Shot Motion Customization of Diffusion Models [66.44642854791807]
ワンショットのインスタンス誘導モーションカスタマイズ手法であるMotionCrafterを紹介する。
MotionCrafterは、基準運動をベースモデルの時間成分に注入する並列時空間アーキテクチャを採用している。
トレーニング中、凍結ベースモデルは外見の正規化を提供し、運動から効果的に外見を分離する。
論文 参考訳(メタデータ) (2023-12-08T16:31:04Z) - Universal Humanoid Motion Representations for Physics-Based Control [71.46142106079292]
物理学に基づくヒューマノイド制御のための総合的な運動スキルを含む普遍的な運動表現を提案する。
まず、大きな非構造運動データセットから人間の動きをすべて模倣できる動き模倣機を学習する。
次に、模倣者から直接スキルを蒸留することで、動作表現を作成します。
論文 参考訳(メタデータ) (2023-10-06T20:48:43Z) - Single Motion Diffusion [33.81898532874481]
SinMDMは、任意の位相を持つ単一運動列の内部モチーフを学習し、それらに忠実な任意の長さの運動を合成するモデルである。
SinMDMは、空間的および時間的相互関係、モーション展開、スタイル転送、群衆アニメーションなど、さまざまな状況に適用することができる。
以上の結果から,SinMDMは品質と時間空間効率の両方で既存手法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-12T13:02:19Z) - MoDi: Unconditional Motion Synthesis from Diverse Data [51.676055380546494]
多様な動きを合成する無条件生成モデルであるMoDiを提案する。
我々のモデルは、多様な、構造化されていない、ラベルなしのモーションデータセットから完全に教師なしの設定で訓練されている。
データセットに構造が欠けているにもかかわらず、潜在空間は意味的にクラスタ化可能であることを示す。
論文 参考訳(メタデータ) (2022-06-16T09:06:25Z) - GANimator: Neural Motion Synthesis from a Single Sequence [38.361579401046875]
本稿では,1つの短い動き列から新しい動きを合成することを学ぶ生成モデルであるGANimatorを提案する。
GANimatorはオリジナルの動きのコア要素に類似した動きを生成し、同時に新規で多様な動きを合成する。
クラウドシミュレーション,キーフレーム編集,スタイル転送,対話型制御など,さまざまな応用例を示し,それぞれが単一の入力シーケンスから学習する。
論文 参考訳(メタデータ) (2022-05-05T13:04:14Z) - MoCo-Flow: Neural Motion Consensus Flow for Dynamic Humans in Stationary
Monocular Cameras [98.40768911788854]
4次元連続時間変動関数を用いて動的シーンをモデル化する表現であるMoCo-Flowを紹介する。
私たちの研究の中心には、運動フロー上の運動コンセンサス正規化によって制約される、新しい最適化の定式化がある。
複雑度の異なる人間の動きを含む複数のデータセット上でMoCo-Flowを広範囲に評価した。
論文 参考訳(メタデータ) (2021-06-08T16:03:50Z) - Task-Generic Hierarchical Human Motion Prior using VAEs [44.356707509079044]
人間の動きを記述する深い生成モデルは、幅広いコンピュータビジョンやグラフィックタスクに役立てることができる。
本稿では,グローバル・ローカル・ラテント・スペースの組み合わせを用いて,特定のタスクに依存しない複雑な人間の動作を学習する手法を提案する。
映像に基づく人間のポーズ推定を含む様々なタスクにおいて,階層的な動き変動自動エンコーダの有効性を実証する。
論文 参考訳(メタデータ) (2021-06-07T23:11:42Z) - MotionRNN: A Flexible Model for Video Prediction with Spacetime-Varying
Motions [70.30211294212603]
本稿では,空間と時間の両方に連続する時空変動を予測できる新たな次元からビデオ予測を行う。
本研究では,動きの複雑な変動を捉え,時空変化に適応できるMotionRNNフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-03T08:11:50Z) - Motion Prediction Using Temporal Inception Module [96.76721173517895]
人間の動作を符号化するTIM(Temporal Inception Module)を提案する。
本フレームワークは,異なる入力長に対して異なるカーネルサイズを用いて,畳み込み層を用いて入力埋め込みを生成する。
標準的な動き予測ベンチマークデータセットであるHuman3.6MとCMUのモーションキャプチャデータセットの実験結果から,我々の手法は一貫して技術手法の状態を上回ります。
論文 参考訳(メタデータ) (2020-10-06T20:26:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。