GAAF: Searching Activation Functions for Binary Neural Networks through
Genetic Algorithm
- URL: http://arxiv.org/abs/2206.03291v1
- Date: Sun, 5 Jun 2022 06:36:22 GMT
- Title: GAAF: Searching Activation Functions for Binary Neural Networks through
Genetic Algorithm
- Authors: Yanfei Li, Tong Geng, Samuel Stein, Ang Li, Huimin Yu
- Abstract summary: Binary neural networks (BNNs) show promising utilization in cost and power-restricted domains such as edge devices and mobile systems.
We propose to add a complementary activation function (AF) ahead of the sign based binarization, and rely on the genetic algorithm (GA) to automatically search for the ideal AFs.
- Score: 15.403807679886716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Binary neural networks (BNNs) show promising utilization in cost and
power-restricted domains such as edge devices and mobile systems. This is due
to its significantly less computation and storage demand, but at the cost of
degraded performance. To close the accuracy gap, in this paper we propose to
add a complementary activation function (AF) ahead of the sign based
binarization, and rely on the genetic algorithm (GA) to automatically search
for the ideal AFs. These AFs can help extract extra information from the input
data in the forward pass, while allowing improved gradient approximation in the
backward pass. Fifteen novel AFs are identified through our GA-based search,
while most of them show improved performance (up to 2.54% on ImageNet) when
testing on different datasets and network models. Our method offers a novel
approach for designing general and application-specific BNN architecture. Our
code is available at http://github.com/flying-Yan/GAAF.
Related papers
- T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Towards Better Out-of-Distribution Generalization of Neural Algorithmic
Reasoning Tasks [51.8723187709964]
We study the OOD generalization of neural algorithmic reasoning tasks.
The goal is to learn an algorithm from input-output pairs using deep neural networks.
arXiv Detail & Related papers (2022-11-01T18:33:20Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
In this work, we address conditional generation using deep invertible neural networks.
We adopt an end-to-end training approach since our objective is to address prediction and generation in the forward and backward processes at once.
arXiv Detail & Related papers (2022-06-02T17:28:33Z) - Automatic Relation-aware Graph Network Proliferation [182.30735195376792]
We propose Automatic Relation-aware Graph Network Proliferation (ARGNP) for efficiently searching GNNs.
These operations can extract hierarchical node/relational information and provide anisotropic guidance for message passing on a graph.
Experiments on six datasets for four graph learning tasks demonstrate that GNNs produced by our method are superior to the current state-of-the-art hand-crafted and search-based GNNs.
arXiv Detail & Related papers (2022-05-31T10:38:04Z) - LHNN: Lattice Hypergraph Neural Network for VLSI Congestion Prediction [70.31656245793302]
lattice hypergraph (LH-graph) is a novel graph formulation for circuits.
LHNN constantly achieves more than 35% improvements compared with U-nets and Pix2Pix on the F1 score.
arXiv Detail & Related papers (2022-03-24T03:31:18Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Enhanced Exploration in Neural Feature Selection for Deep Click-Through
Rate Prediction Models via Ensemble of Gating Layers [7.381829794276824]
The goal of neural feature selection (NFS) is to choose a relatively small subset of features with the best explanatory power.
Gating approach inserts a set of differentiable binary gates to drop less informative features.
To improve the exploration capacity of gradient-based solutions, we propose a simple but effective ensemble learning approach.
arXiv Detail & Related papers (2021-12-07T04:37:05Z) - Neural Network Branch-and-Bound for Neural Network Verification [26.609606492971967]
We propose a novel machine learning framework that can be used for designing an effective branching strategy.
We learn two graph neural networks (GNNs) that both directly treat the network we want to verify as a graph input.
We show that our GNN models generalize well to harder properties on larger unseen networks.
arXiv Detail & Related papers (2021-07-27T14:42:57Z) - Implementing a foveal-pit inspired filter in a Spiking Convolutional
Neural Network: a preliminary study [0.0]
We have presented a Spiking Convolutional Neural Network (SCNN) that incorporates retinal foveal-pit inspired Difference of Gaussian filters and rank-order encoding.
The model is trained using a variant of the backpropagation algorithm adapted to work with spiking neurons, as implemented in the Nengo library.
The network has achieved up to 90% accuracy, where loss is calculated using the cross-entropy function.
arXiv Detail & Related papers (2021-05-29T15:28:30Z) - A Neural Network Approach for Online Nonlinear Neyman-Pearson
Classification [3.6144103736375857]
We propose a novel Neyman-Pearson (NP) classifier that is both online and nonlinear as the first time in the literature.
The proposed classifier operates on a binary labeled data stream in an online manner, and maximizes the detection power about a user-specified and controllable false positive rate.
Our algorithm is appropriate for large scale data applications and provides a decent false positive rate controllability with real time processing.
arXiv Detail & Related papers (2020-06-14T20:00:25Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.